Answer:
C. two atoms of oxygen.
Explanation:
Step 1: Data given
Silicon has 14 electrons
Silicon is part of Group IV, all the elements there have 4 valence electrons.
It can form a compound when 4 valence electrons bind with the 4 valence elctrons of silicon
A. four atoms of calcium.
Calcium has 2 valence elctrons. 4 atoms of calcium <u>cannot bind</u> on 1 atom of silicon since there are only 4 valence electrons.
B. one atom of chlorine.
1 atom of chlorine has 7 valence electrons. Chlorine can bind with an atom with 1 valence electron. Since silicon has 4 valence electrons, they will <u>not bind.</u>
Silicon can bind with 4 atoms of chlorine to form SiCl4
C. two atoms of oxygen.
Oxygen has 6 valence electrons, this means oxygen can bind with an element with 2 valence electrons.
Since silicon has 4 valence electrons, it <u>can bind</u> with 2 atoms of oxygen to form SiO2 (silicon dioxide).
D. three atoms of hydrogen.
Hydrogen has 1 valence electron. 1 hydrogen atom can bind with an element that has 7 valence electrons.
Three atoms of hydrogen can bind with an element that has 5 valence electrons.
Silicon <u>will not</u> bind with 3 atoms of hydrogen ( but can bind with 4 atoms of hydrogen)
Answer:
Most of these rocks are not made up of common geometric shapes
Explanation:
Because most rocks are not made up of common geometric shapes, it would be difficult or impossible to find the volume of a rock using a ruler; there would be no easy way to measure the rock's volume using a ruler
Hope this helped!
The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).
The general reaction is:
2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) (1)
We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:
Li⁰(s) → Li⁺(aq) + e⁻ (2)
Fe²⁺(aq) + 2e⁻ → Fe⁰(s) (3)
We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).
We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.
In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).
Therefore, the reducing agent in reaction (1) is lithium (Li).
Learn more here:
I hope it helps you!
Answer:
If we subtract the atomic number from the atomic mass: atomic mass - atomic number = number of protons + number of neutrons - number of protons. Thus we get the number of neutrons present in an atom when we subtract the atomic number from the atomic mass.
Explanation: hope this helps???
When studying atoms, scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
Explanation:
Scientists can ignore the gravitational force because the gravitational force is considered to be negligible as compared to the other forces due to its smaller value.We all know that the gravitational force is directly proportional to the mass of an object which result in a small force value.When the value of this small force is compared to the value of the electrical force between protons and electrons in atoms the we can say that the electrical force is million times stronger than the gravitational force
Thus we can say that scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.