Answer:
1.99 x 10⁻¹⁸J
Explanation:
Given parameters:
Frequency of the wave = 3 x 10¹⁵Hz
Unknown:
Energy of the photon = ?
Solution:
To solve this problem, we use the expression below;
E = hf
Where E is the energy, h is the Planck's constant and f is the frequency
Now insert the parameters and solve for E;
E = 6.63 x 10⁻³⁴ x 3 x 10¹⁵ = 19.9 x 10⁻¹⁹J or 1.99 x 10⁻¹⁸J
The answer is b (bladder)
THE ALTERNATIVE IS 4.8g alternative c
To solve the problem, we assume the sample to be ideal. Then, we use the ideal gas equation which is expressed as PV = nRT. From the first condition of the nitrogen gas sample, we calculate the number of moles.
n = PV / RT
n = (98.7x 10^3 Pa x 0.01 m^3) / (8.314 Pa m^3/ mol K) x 298.15 K
n = 0.40 mol N2
At the second condition, the number of moles stays the same however pressure and temperature was changed. So, the new volume is calculated as follows:
V = nRT / P
V = 0.40 x 8.314 x 293.15 / 102.7 x 10^3
V = 9.49 x 10^-3 m^3 or 9.49 L