Answer:
115 m/s, 414 km/hr
Explanation:
There are two forces acting on a skydiver: gravity and air resistance (drag). At terminal velocity, the two forces are equal and opposite.
∑F = ma
D − mg = 0
D = mg
Drag force is defined as:
D = ½ ρ v² C A
where ρ is the fluid density,
v is the velocity,
C is the drag coefficient,
and A is the cross sectional surface area.
Substituting and solving for v:
½ ρ v² C A = mg
v² = 2mg / (ρCA)
v = √(2mg / (ρCA))
We're given values for m and A, and we know the value of g. We need to look up ρ and C.
Density of air depends on pressure and temperature (which vary with elevation), but we can estimate ρ ≈ 1.21 kg/m³.
For a skydiver falling headfirst, C ≈ 0.7.
Substituting all values:
v = √(2 × 80.0 kg × 9.8 m/s² / (1.21 kg/m³ × 0.7 × 0.140 m²))
v = 115 m/s
v = 115 m/s × (1 km / 1000 m) × (3600 s / hr)
v = 414 km/hr
The net force on q2 will be 1.35 N
A force in physics is an effect that has the power to alter an object's motion. A mass-containing object's velocity can vary, or accelerate, as a result of a force. Intuitively, a push or a pull can also be used to describe force. Being a vector quantity, a force has both magnitude and direction.
Given Particles q1, q2, and q3 are in a straight line. Particles q1 = -5.00 x 10-6 C,q2 = +2.50 x 10-6 C, and q3 = -2.50 x 10-6 C. Particles q₁ and q2 are separated by 0.500 m. Particles q2 and q3 are separated by 0.250 m.
We have to find the net force on q2
At first we will find Force due to q1
F = 9 × 10⁹ × 5 × 10⁻⁶ × 2.5 × 10⁻⁶ / 0.5²
F = 450 × 10⁻³
F₁ = 0.45 N (+)
Now we will find Force due to q2
F = 9 × 10⁹ × 5 × 10⁻⁶ × 2.5 × 10⁻⁶ / 0.25²
F = 1800 × 10⁻³
F₂ = 1.8 N (-)
So net force (F) will be
F = F₂ - F₁
F = 1.8 - 0.45
F = 1.35 N
Hence the net force on q2 will be 1.35 N
Learn more about force here:
brainly.com/question/25573309
#SPJ10
Answer:
more point plzzzzz... eeeeeeeee
Answer:
when a custodian pushes a large crate across the gym floor, forces acting on the crate are the one applied by the custodian, frictional force acting in the opposite direction of motion acting between the surface of crate and floor and reaction force (normal force) acting in upward direction normal to the surface
Explanation: