Kinetic energy = 0.5 * m * v²
m mass
v velocity
If the velocity stays the same and the kinetic energy goes down by a factor of 2, the mass must go down by a factor of 2 also.
Answer:
kinetic energy=1/2mv^2.
which is 4320000=1/2×m×23^2.
which is 4320000=1/2×m×529.
4320000=264.5m.
m=4320000/264.5.
m=16332.70~16333g
Answer:
it will double because im right
Answer: D(t) = 
Explanation: A harmonic motion of a spring can be modeled by a sinusoidal function, which, in general, is of the form:
y =
or y = 
where:
|a| is initil displacement
is period
For a Damped Harmonic Motion, i.e., when the spring doesn't bounce up and down forever, equations for displacement is:
or 
For this question in particular, initial displacement is maximum at 8cm, so it is used the cosine function:
period =
12 =
ω = 
Replacing values:

The equation of displacement, D(t), of a spring with damping factor is
.