Answer:
W = Fd = KE =1/2mv²
Explanation:
not sure if that's what your looking for but i'm pretty sure this is it.
Considering the unknown resistence as R and using the Ohm's First Law, we have:
The equivalent resistence is given by the resistor series with the lamp resistence.

If you notice any mistake in my english, please let me know, because i am not native.
Answer:
10 seconds
Explanation:
x = x₀ + v₀ t + ½ at²
250 = 0 + (0) t + ½ (5) t²
250 = 2.5 t²
t² = 100
t = 10
It takes 10 seconds to land from a height of 250 ft.
Complete Question:
Two 3.0µC charges lie on the x-axis, one at the origin and the other at 2.0m. A third point is located at 6.0m. What is the potential at this third point relative to infinity? (The value of k is 9.0*10^9 N.m^2/C^2)
Answer:
The potential due to these charges is 11250 V
Explanation:
Potential V is given as;

where;
K is coulomb's constant = 9x10⁹ N.m²/C²
r is the distance of the charge
q is the magnitude of the charge
The first charge located at the origin, is 6.0 m from the third charge; the potential at this point is:

The second charge located at 2.0 m, is 4.0 m from the third charge; the potential at this point is:

Total potential due to this charges = 4500 V + 6750 V = 11250 V