Answer:

Explanation:
Velocity of the ship is given as

the direction of the velocity of the ship is making an angle of 11 degree with the current
so we will have two components of the velocity
1) along the direction of the current
2) perpendicular to the direction of the current
so here we know that the component of the ship velocity along the direction of the current is given as



Explanation:
Given that,
Work done to stretch the spring, W = 130 J
Distance, x = 0.1 m
(a) We know that work done in stretching the spring is as follows :

(b) If additional distance is 0.1 m i.e. x = 0.1 + 0.1 = 0.2 m
So,

So, the new work is more than 130 J.
Answer:
Object A and C (Second choice)
Let's observe one by one
#A..
Kupier belt is a belt associated at Neptune outerside similar to asteroid belt
#B.
Has enough gravity to keep other objects far away from its orbit
- It's any planet or may be sun /star
No
#C
Is in orbit around the sun
#D
Is almost circular in shape
Index fossils (also known as guide
fossils, indicator fossils or zone
fossils) are fossils used to define
and identify geologic periods (or
faunal stages).
Answer:
a) 0.036 J b) 0.036J c) 0.036 d) 1.9m/s e) 0.18 m
Explanation:
Mass of the dart = 0.02kg, the spring was compressed to 6cm
Work needed to compress the spring = 1/2*k*x ^2 where k is the force constant of the spring in N/m, x is the distance it was compressed in m
Work needed to compress the spring = 0.5 * 20* 0.06^2 since 6cm = 6 / 100 = 0.06 m
Work needed to compress the spring = 0.036J
b) the total energy stored in the spring = the work done to compress the spring = 0.036J
c) kinetic energy of the dart as it leaves the the spring = elastic potential energy stored in the spring = the work done in compressing the = 0.036J using the law of conservation of energy; energy is neither created nor destroyed but transformed from one form to another.
d) 1/2mv^2 = 0.036
mv^2 = 0.036*2
v^2 = 0.036*2 / 0.02 = 3.6
v = √3.6 = 1.897 approx 1.9m/s
e) kinetic energy of the dart = work done against gravity to get the body to height h
Work done against gravity = potential energy conserved at height = -mgh g is negative because the motion is upward while gravity acts downward
0.036 = 0.02 * 9.81 * h
0.036 / ( 0.02*9.81) = h
h = 0.18 m