Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
Answer: B)To the left of the charges.
Explanation: between the charges the electric field will not cancel but will be added since electric field lines from both charges point in the same direction. To the right of the charge the -4q will take over as it’s strength overcomes the strength of the +q charge. At this point the magnitude of +q will never reach a magnitude strong enough to cancel the -4q. To the left, it is further away from -4q and is closer to +q and electric field lines point in different direction
Answer:
The angular velocity is
5.64rad/s
Explanation:
This problem bothers on curvilinear motion
The angular velocity is defined as the rate of change of angular displacement it is expressed in rad/s
We know that the velocity v is given as
v= ωr
Where ω is the angular velocity
r is 300mm to meter = 0.3m
the radius of the circle
described by the level
v=1.64m/s
Making ω subject of the formula and solving we have
ω=v/r
ω=1.64/0.3
ω=5.46 rad/s
When Sam presses the brake lever, a pair of rubber shoes clamps onto the metal inner rim of the front and back wheels. As the brake shoes rub against the wheels, friction is caused and the kinetic energy possessed by the vehicle is converted into heat which slows down the vehicle.