In the equation given above, there is conservation of MASS, CHARGE AND ENERGY.
These three parameters are usually conserved during the course of chemical reactions. When any of these parameter experience a reduction during the course of chemical reaction, such loss is always gained by other elements involved in the same reaction, so that at the end of the day, they are not considered as lost.
Answer:
1.2
Explanation:
Molarity = moles/volume
to find the moles, you must multiply both sides by volume
so, take 1.5 L * 0.80 M
this equals 1.2 :)
First, we have to remember the molarity formula:

Part 1:
In this case, our solute is sodium nitrate (NaNO3), and we have the mass dissolved in water, then we have to convert grams to moles. For that, we need the molecular weight:

Then, we calculate the moles present in the solution:

Now, we have the necessary data to calculate the molarity (with the solution volume of 200 mL):

The molarity of this solution equals 0.2339 M.
Part 2:
In this case, we have the same amount (in moles and mass) of sodium nitrate, but a different volume of solution, then we only have to change it:

So, the molarity of this solution is 0.1701 M.
The empirical formula is the same as the molecular formula : C₁₀H₅O₂
<h3>Further explanation</h3>
Given
Molecular formula : C₁₀H₅O₂
Required
The empirical formula
Solution
The empirical formula (EF) is the smallest comparison of atoms of compound forming elements.
The molecular formula (MF) is a formula that shows the number of atomic elements that make up a compound.
(empirical formula) n = molecular formula
<em>(EF)n=MF
</em>
(EF)n = C₁₀H₅O₂
If we divide by the number of moles of Oxygen (the smallest) which is 2 then the moles of Hydrogen will be a decimal number (not whole), which is 2.5, then the empirical formula is the same as the molecular formula