Answer:
Mass = 15.20 g of KCl
Explanation:
The balance chemical equation for the decomposition of KClO₃ is as follow;
2 KClO₃ = 2 KCl + 3 O₂
Step 1: Calculate moles of KClO₃ as;
Moles = Mass / M/Mass
Moles = 25.0 g / 122.55 g/mol
Moles = 0.204 moles
Step 2: Find moles of KCl as;
According to equation,
2 moles of KClO₃ produces = 2 moles of KCl
So,
0.204 moles of KClO₃ will produce = X moles of KCl
Solving for X,
X = 2 mol × 0.204 mol / 2 mol
X = 0.204 mol of KCl
Step 3: Calculate mass of KCl as,
Mass = Moles × M.Mass
Mass = 0.204 mol × 74.55 g/mol
Mass = 15.20 g of KCl
In this item, I supposed, that we are determine the molar fraction of oxygen and carbon dioxide in the sample. This can be done by dividing their respective partial pressures by the total pressure of the sample.
O2 : mole fraction = (100.7 mmHg) / (763.00 mmHg) = 0.13
CO2 : mole fraction = (33.57 mmHg) / (763.00 mmHg) = 0.044
Answers: O2 = 0.13
CO2 = 0.044
The equilibrium constant is found by [product]/[reactant]
If the equilibrium constant is very small, such as 4.20 * 10^-31, then that means at equilibrium there is very little product and a lot of reactant.
And likewise, if there is a lot of product formed, and very little reactant, then the K value will be very large, which tells us that it is predominantly product.
At equilibrium, for any reaction, there will always be some reactant and some product present. There cannot be zero reactant or zero product. Also keep in mind that the equilibrium constant is dependent on temperature.
At equilibrium, for your reaction, it is predominantly reactants.
Answer:
It converts energy in food into a more usable form. (Cellular Respiration-The enzyme-controlled process in which energy is released from food and converted into a form that the cell can use.)
Explanation: