<span>In order to answer her question regarding how many students at her high school had summer jobs Nan must follow the procedure given in answer option B: First, randomly select 100 students, then ask them if they have summer jobs. In statistics this method is known as Population Sampling. These 100 students are chosen at random in order to avoid bias - we need them to be representative of the entire high school population.</span>
Answer:
6.86 * 10^8 m
Explanation:
Parameters given:
Mass of hot gas, m = 2 kg
Gravitational Force, F = 618.2 N
Mass of Alpha Centauri, M = 2.178 * 10^30 kg
The gravitational force between two masses (the hot gas and Alpha Centauri) , m and M, at a distance, r, given as:
F = (G*M*m) / r²
Where G = gravitational constant
Therefore,
618.2 = (6.67 * 10^(-11) * 2.178 * 10^30 * 2) / r²
=> r² = (6.67 * 10^(-11) * 2.178 * 10^30 * 2) / 618.2
r² = 4.699 * 10^17 m²
=> r = 6.86 * 10^8 m
We are told that the hot gas is on the surface of Alpha Centauri, hence, the distance between both their centers is the radius of Alpha Centauri.
The mean radius of Alpha Centauri is 6.86 * 10^8 m.
Answer:
a. Disk, 28 thousand light-years from
Explanation:
Since, a galactic disc is a component of disc galaxies, for instance spiral galaxies and lenticular galaxies. It consists of a stellar component and a gaseous component.
Also, the Sun lies within the galactic disk or in other words it is thought to be located in the galactic disk,
The Sun is located about 26,000 light-years away from the centre of the galaxy.
∵ From the given options 28,000 is nearest to 26,000
Hence, the sun is about 28 thousand light-years from the centre of the galaxy.
i.e. OPTION 'a' would be correct.
Answer:
alkene series
Explanation:
the alkene series are the hydrocarbons e.gc2h4 c3h8
Answer:
a) Total mass form, density and axis of rotation location are True
b) I = m r²
Explanation:
a) The moment of inertia is the inertia of the rotational movement is defined as
I = ∫ r² dm
Where r is the distance from the pivot point and m the difference in body mass
In general, mass is expressed through density
ρ = m / V
dm = ρ dV
From these two equations we can see that the moment of inertia depends on mass, density and distance
Let's examine the statements, the moment of inertia depends on
- Linear speed False
- Acceleration angular False
- Total mass form True
- density True
- axis of rotation location True
b) we calculate the moment of inertia of a particle
For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is
I = m r²