Answer:
answer is a very large amount of energy is produced from a very small mass
Explanation:
nuclear energy is produced either by fusion or fission the former is fusion of lighter atoms into heavier elements while the letter is the splitting of a heavier atom into lighter atoms. both produce tremendous amount of energy fusion causes compassion of mass wild fission reduces it. and produce it. fusion does not produce radioactive particles while fission does (alpha and beta particles and neutrons)
Answer:
300000.01008 Pa
123.76237 m/s²
Explanation:
= Density of liquid nitrogen = 808 kg/m³
h = Depth
g = Acceleration due to gravity
P = Atmospheric pressure
Absolute Pressure is given by
Below 2 m from surface

Below 5 m from surface

Subtracting the above equations we get

The acceleration due to gravity on the planet is 123.76237 m/s²
Equating the value of g in the first equation

The atmospheric pressure on the planet is 300000.01008 Pa
Answer:
Height, H = 25.04 meters
Explanation:
Initially the ball is at rest, u = 0
Time taken to fall to the ground, t = 2.261 s
Let H is the height from which the ball is released. It can be calculated using the second equation of motion as :

Here, a = g
H = 25.04 meters
So, the ball is released form a height of 25.04 meters. Hence, this is the required solution.
Complete question:
if two point charges are separated by 1.5 cm and have charge values of +2.0 and -4.0 μC, respectively, what is the value of the mutual force between them.
Answer:
The mutual force between the two point charges is 319.64 N
Explanation:
Given;
distance between the two point charges, r = 1.5 cm = 1.5 x 10⁻² m
value of the charges, q₁ and q₂ = 2 μC and - μ4 C
Apply Coulomb's law;

where;
F is the force of attraction between the two charges
|q₁| and |q₂| are the magnitude of the two charges
r is the distance between the two charges
k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²

Therefore, the mutual force between the two point charges is 319.64 N
Answer:
Explanation:
Use the one-dimensional equation
which says that the final velocity of an object is equal to the object's initial velocity plus its acceleration times time. We are looking for time. That means the equation looks like this:
0 = 30 + (-4)t and
-30 = -4t so
t = 7.5 sec