We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d:
The answer to the question is that before the big bang, the universe was much hotter and more dense than it is now. Letter B.
It is because after the big bag occurred, the universe became cooler and less dense.
a. - does not correspond in the answer because the universe became less dense after the big bang.
c - the universe became cool and less dense after the big bang so being cool and less dense does not correspond to the question.
d - cooler does not answer the question because it only became cooler after the big bang.
Break the circuit and apace a meter actually within the circuit.
The number of charge drifts are 3.35 X 10⁻⁷C
<u>Explanation:</u>
Given:
Potential difference, V = 3 nV = 3 X 10⁻⁹m
Length of wire, L = 2 cm = 0.02 m
Radius of the wire, r = 2 mm = 2 X 10⁻³m
Cross section, 3 ms
charge drifts, q = ?
We know,
the charge drifts through the copper wire is given by
q = iΔt
where Δt = 3 X 10⁻³s
and i = 
where R is the resistance
R = 
ρ is the resistivity of the copper wire = 1.69 X 10⁻⁸Ωm
So, i = 
q = 
Substituting the values,
q = 3.14 X (0.02)² X 3 X 10⁻⁹ X 3 X 10⁻³ / 1.69 X 10⁻⁸ X 0.02
q = 3.35 X 10⁻⁷C
Therefore, the number of charge drifts are 3.35 X 10⁻⁷C