Answer: electromagnetism.
Explanation:The use of coils of wires produces a relationship between electricity and magnetism that gives us another magetism called electromagnetism.
Answer:
Melt.
Explanation:
When rocks melt, they do so slowly and gradually because most rocks are made of several minerals, which all have different melting points; moreover, the physical and chemical relationships controlling the melting are complex. As a rock melts, for example, its volume changes. When enough rock is melted, the small globules of melt link up and soften the rock.
Under normal conditions, mantle rock like peridotite shouldn't melt in the Earth's upper mantle. However, by adding water you can lower the melting point of the rock. Alternatively, by decompressing the rock, you can bring it to a pressure where the melting point is lower. In both cases, basalt magma will form and considering it is hotter and less dense than the surrounding rock, it will percolate towards the surface and some of that erupts.
Answer:
(a) the speed of the block after the bullet embeds itself in the block is 3.226 m/s
(b) the kinetic energy of the bullet plus the block before the collision is 500J
(c) the kinetic energy of the bullet plus the block after the collision is 16.13J
Explanation:
Given;
mass of bullet, m₁ = 0.1 kg
initial speed of bullet, u₁ = 100 m/s
mass of block, m₂ = 3 kg
initial speed of block, u₂ = 0
Part (A)
Applying the principle of conservation linear momentum, for inelastic collision;
m₁u₁ + m₂u₂ = v(m₁ + m₂)
where;
v is the speed of the block after the bullet embeds itself in the block
(0.1 x 100) + (3 x 0) = v (0.1 + 3)
10 = 3.1v
v = 10/3.1
v = 3.226 m/s
Part (B)
Initial Kinetic energy
Ki = ¹/₂m₁u₁² + ¹/₂m₂u₂²
Ki = ¹/₂(0.1 x 100²) + ¹/₂(3 x 0²)
Ki = 500 + 0
Ki = 500 J
Part (C)
Final kinetic energy
Kf = ¹/₂m₁v² + ¹/₂m₂v²
Kf = ¹/₂v²(m₁ + m₂)
Kf = ¹/₂ x 3.226²(0.1 + 3)
Kf = ¹/₂ x 3.226²(3.1)
Kf = 16.13 J
Answer:
7 m .
Explanation:
For destructive interference
Path difference = odd multiple of λ /2
Wave length of sound from each of A and B.
= speed / frequency
λ = 334 / 172 = 2 m
λ/2 = 1 m
If I am 1 m away from B , the path difference will be
8 - 1 = 7 m which is odd multiple of 1 or λ /2
So path difference becomes odd multiple of λ /2.
This is the condition of destructive interference.
So one meter is the closest distance which I can remain at so that i can hear destructive interference.