Answer:
a) 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b) 3.466 × 10¹¹ N/C
Explanation:
a)
p(r) = -A exp ( - 2r/a₀)
Q = ₀∫^∞ ₀∫^π ₀∫^2xπ p(r)dV = -A ₀∫^∞ ₀∫^π ₀∫^2π exp ( - 2r/a₀)r² sinθdrdθd∅
Q = -4πA ₀∫^∞ exp ( - 2r/a₀)r²dr = -e
now using integration by parts;
A = e / πa₀³
p(r) = - (e / πa₀³) exp (-2r/a₀)
Now Net charge inside a sphere of radius a₀ i.e Qnet is;
= e - (e / πa₀³) ₀∫^a₀ ₀∫^π ₀∫^2π r² exp (-2r/a₀)dr
= e - e + 5e exp (-2) = 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b)
Using Gauss's law,
E × 4πa₀ ² = Qnet / ∈₀
E = 4πa₀ ² × Qnet × 1/a₀²
E = 3.466 × 10¹¹ N/C
The work done is 
Explanation:
The work done by a force on an object is given by:

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and of the displacement
In this problem, we have
F = 1080 N is the force applied on the car
d = 218 m is the displacement of the car
And assuming the force is applied parallel to the motion of the car,
, and so the work done is

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Muscles function only by contracting. This makes it necessary for one end of the muscle to be fixed and the other mobile.
Take the bicep for example.
Its origin is at the shoulder and its two heads connect to the bones of the forearm, the radius and ulna.
Now, had the muscle not been fixed at one end, and contracted, it would pull both our shoulder and forearm together resulting in an ineffective movement. The desired motion is to lift the forearm (proximal and distal movement) which can only be achieved if the bicep is fixed at the shoulder and allowed to move at the forearm.
Letter B
without a medium, there is nothing to compress, hence, no wave. A fast- medium like a gas (air) is easy to compress and allows waves to move through it easily. a slow medium, like a liquid, is still pretty fast, but not as fast as air.