With the switch open, there's no current in the circuit, and therefore
no voltage drop across any of the dissipative elements (the resistor
or the battery's internal impedance). So the entire battery voltage
appears across the switch, and the voltmeter reads 12.0V .
Answer:
Check the explanation
Explanation:
1) Pressure acting on the plug = Patm + P
Pressure = Patm + rho*g*h (Here h = D2)
Pressure = 101325 + 1000*9.8*7
Pressure = 169925 Pa
so, Force = PA
Force = 169925*pi*0.0152
Force = 120.1 N
The answer is 21m because the motion is in one dimension with constant acceleration.
The initial velocity is 0, because it started from rest, the acceleration <span>ax</span> is <span>4.7<span>m<span>s2</span></span></span>, and the time t is <span>3.0s</span>
Plugging in our known values, we have
<span>Δx=<span>(0)</span><span>(3.0s)</span>+<span>12</span><span>(4.7<span>m<span>s2</span></span>)</span><span><span>(3.0s)</span>2</span>=<span>21<span>m</span></span></span>
Answer: 2934.75 Joules
Explanation:
Potential energy can be defined as energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;
<em>P.E = mgh</em>
Where P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per second square.
h represents the height measured in meters.
Given the following data;
Weight =645
Height = 4.55
<em>P.E = mgh</em>
But we know that weight = mg = 645N
Substituting into the equation, we have;
<em>P.E = 645 • 4.55</em>
<em>P.E = 2934.75J</em>
Potential energy, P.E = 2934.75 Joules.