Answer:
the wavelength is 9.8 meters
Explanation:
We can use the relationship:
Velocity = wavelenght*frequency.
Initially we have:
wavelenght = 4.9m
velocity = 9.8m/s
then:
9.8m/s = 4.9m*f
f = 9.8m/s/4.9m = 2*1/s
now, if the velocity is doubled and the frequency remains the same, we have:
2*9.8m/s = wavelenght*2*1/s
wavelenght = (2*9.8m/s)*(1/2)s = 9.8 m
Answer:
Net force exerted on the radio is 27.5 Newton.
Given:
Mass = 5.5 kg
Acceleration = 5 
To find:
Force exerted on the radio = ?
Formula used:
F = ma
Where F = net force
m = mass
a = acceleration
Solution:
According to Newton's second law of motion,
F = ma
Where F = net force
m = mass
a = acceleration
F = 5.5 × 5
F = 27.5 Newton
Hence, Net force exerted on the radio is 27.5 Newton.
Answer:
9654.34 m
Explanation:
from conservation of momentum

And from Conservation of Energy

Answer:
Constructive interference
Explanation:
- This is an example of a standing wave produced when two ends of a string are oscillated in the same plane. The displacement of of point on two ends oscillates vertically.
- We are given that two pulses move along the string each coming towards each other and meet at a common point ( P ).
- Each pulse have their own magnitude or displacement in the vertical plane. If the pulses are to meet at a common point at the same instant, then they interfere with each other constructively.
- Where constructive interference of two pulses is the addition of magnitudes of induvidual pulses and form a single puls of the constructed magnitude.
magnitude ( New pulse ) = magnitude (Pulse 1) + magnitude (Pulse 2)