consider the motion in Y-direction
v₀ = initial velocity = 29 Sin62 = 25.6 m/s
a = acceleration = - 9.8 m/s²
t = time of travel
Y = vertical displacement = - 0.89 m
using the equation
Y = v₀ t + (0.5) a t²
- 0.89 = (25.6) t + (0.5) (- 9.8) t²
t = 5.3 sec
consider the motion along the horizontal direction :
v₀ = initial velocity = 29 Cos62 = 13.6 m/s
a = acceleration = 0 m/s²
t = time of travel = 5.3 sec
X = horizontal displacement =?
using the equation
X = v₀ t + (0.5) a t²
X = (13.6) (5.3) + (0.5) (0) t²
X = 72.1 m
d = distance traveled by the center fielder to catch the ball = 107 - x = 107 - 72.1 = 34.9 m
t = time taken = 5.3 sec
v = speed of center fielder
using the equation
v = d/t
v = 34.9/5.3
v = 6.6 m/s
The quantity of matter in a body regardless of its volume or of any forces acting on it.
Answer:
Diffusing the gradient ensures that most of the molecules in high concentration zone will wind up in the previously low concentration by the spontaneous movement of small molecules.
Explanation:
A gradient of concentration is the difference between in concentration of one place / area substance to different area. Having a molecule flow down its concentration gradient means moving the molecules from hypotonic areas to the concentration hypertonic areas
Diffusing the gradient ensures that most of the molecules in high concentration zone will wind up in the previously low concentration by the spontaneous movement of small molecules.
Answer:
<em>a. 4.21 moles</em>
<em>b. 478.6 m/s</em>
<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Explanation:
Volume of container = 100.0 L
Temperature = 293 K
pressure = 1 atm = 1.01325 bar
number of moles n = ?
using the gas equation PV = nRT
n = PV/RT
R = 0.08206 L-atm-

Therefore,
n = (1.01325 x 100)/(0.08206 x 293)
n = 101.325/24.04 = <em>4.21 moles</em>
The equation for root mean square velocity is
Vrms = 
R = 8.314 J/mol-K
where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol
Vrms =
= <em>478.6 m/s</em>
<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>
= 
where
Voxy = root mean square velocity of oxygen = 478.6 m/s
Vnit = root mean square velocity of nitrogen = ?
Moxy = Molar mass of oxygen = 31.9 g/mol
Mnit = Molar mass of nitrogen = 14.00 g/mol
= 
= 0.66
Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>
<em>the root mean square velocity of the oxygen gas is </em>
<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Answer:
Option D
670 Kg.m/s
Explanation:
Initial momentum is given by mv=82*5.6=459.2 Kg.m/s (taking eastward as positive)
Final momentum is also mv but v being westward direction, we take it negative
Final momentum=82*-2.5= -205 Kg.m/s
Change in momentum=Final momentum-Initial momentum=-205-459.2=-664.2 Kg.m/s
Impulse=change in momentum=664.2 Kg.m/s rounded off as 670 Kg.m/s