Well, first of all, a car moving around a circular curve is not moving
with uniform velocity. The direction of motion is part of velocity, and
the direction is constantly changing on a curve.
The centripetal force that keeps an object moving in a circle is
Force = (mass of the object) · (speed)² / (radius of the circle)
F = m s² / r
We want to know the radius, to rearrange the formula to give us
the radius as a function of everything else.
F = m s² / r
Multiply each side by 'r': F· r = m · s²
Divide each side by 'F': r = m · s² / F
We know all the numbers on the right side,
so we can pluggum in:
r = m · s² / F
r = (1200 kg) · (20 m/s)² / (6000 N) .
I'm pretty sure you can finish it up from here.
Answer:
<h2>Electricity has many uses in our day to day life. It is used for lighting rooms, working fans and domestic appliances like using electric stoves, A/C and more. All these provide comfort to people. In factories, large machines are worked with the help of electricity.</h2>
Structural constraint is the answer :)
Newton’s first law is commonly stated as:
An object at rest stays at rest and an object in motion stays in motion.
However, this is missing an important element related to forces. We could expand it by stating:
An object at rest stays at rest and an object in motion stays in motion at a constant speed and direction unless acted upon by an unbalanced force.
By the time Newton came along, the prevailing theory of motion—formulated by Aristotle—was nearly two thousand years old. It stated that if an object is moving, some sort of force is required to keep it moving. Unless that moving thing is being pushed or pulled, it will simply slow down or stop. Right?
This, of course, is not true. In the absence of any forces, no force is required to keep an object moving. An object (such as a ball) tossed in the earth’s atmosphere slows down because of air resistance (a force). An object’s velocity will only remain constant in the absence of any forces or if the forces that act on it cancel each other out, i.e. the net force adds up to zero. This is often referred to as equilibrium. The falling ball will reach a terminal velocity (that stays constant) once the force of air resistance equals the force of gravity.
Hope this help
I think 3 is 1.5...i kinda hope that helps for one