Explanation:
It is given that,
Distance between wires, d = 3.5 mm = 0.0035 m
Power of light bulb, P = 100 W
Potential difference, V = 120 V
(a) We need to find the force per unit length each wire of the cord exert on the other. It is given by :

Power, P = V × I

This gives, 


(b) Since, the two wires carry equal currents in opposite directions. So, teh force is repulsive.
(c) This force is negligible.
Hence, this is the required solution.
Answer:
The answer to your question is a = 1.3 m/s²
Explanation:
Centripetal acceleration is the motion of a body that transverse a circular path.
Data
mass = 7 kg
radius = r = 1.3 m
angular rate = w = 1.0 rev/s
centripetal acceleration = a = ?
Formula
a = rw²
Substitution
a = (1.3)(1)²
Simplification and result
a = 1.3 m/s²
When you reverse the direction of the current, the current loop generated by the magentic field is revered.
<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>
<span> </span>
1.) Use the formula to solve -
1/f = 1/do + 1/di; Where f = focal length; 1/do + 1/di
1/f = 1/do + di
1/8 = 1/25 + 1/?
.125 = .04 + 1/di
.125 -.04 = 1/di (transferred .04 to the left side of the equation)
.085/1 = 1/di
.085di/.085 = 1/.085 (multiplied both sides by di and divided both sides by .085)
di = 11.76 or 12
2.) Therefore, 12 cm is the distance from the image to the mirror