Answer:
6.5
Step-by-step explanation:
13/10÷2/10= 13/10*10/2
cancel out the 10 and that leaves you with 13/1*1/2=13/2
simplify 13/2 and that leaves you with 6.5
Answer:


Step-by-step explanation:
Given

Required
Determine a and b
An exponential function is represented as:

By comparing:
with 


Answer:
9.2
Step-by-step explanation:
you get 9.1651513... but it says round to the nearest 10th which would be 9.2
Answer: The Ferris wheel’s speed in feet per hour.
Step-by-step explanation:
Answer:
The equivalent will be:
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{\frac{2}{7}}\right)\left(y^{-\frac{3}{5}}\right)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D%3D%5Cleft%28%5C%3Ax%5E%7B%5Cfrac%7B2%7D%7B7%7D%7D%5Cright%29%5Cleft%28y%5E%7B-%5Cfrac%7B3%7D%7B5%7D%7D%5Cright%29)
Therefore, option 'a' is true.
Step-by-step explanation:
Given the expression
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D)
Let us solve the expression step by step to get the equivalent
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D)
as
∵ ![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)



also
∵ ![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)



so the expression becomes


∵ 
Thus, the equivalent will be:
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{\frac{2}{7}}\right)\left(y^{-\frac{3}{5}}\right)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B7%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B5%5D%7By%5E3%7D%7D%3D%5Cleft%28%5C%3Ax%5E%7B%5Cfrac%7B2%7D%7B7%7D%7D%5Cright%29%5Cleft%28y%5E%7B-%5Cfrac%7B3%7D%7B5%7D%7D%5Cright%29)
Therefore, option 'a' is true.