Answer:
1.2 s
Explanation:
The period of a pendulum is the time it takes to complete one cycle, as in move and return to its initial state, for example going from one side to the other and coming back. If this pendulum goes from one side to the other in 0.6 s, it will take it the doble of that time to perform a cycle, and that is the period
T = 2 * 0.6 s = 1.2 s
4.266 m is the radius of the circular path the electron follows.
Given
Speed of electron (v) = 7.5 × 10⁶ m/s
Earth's Magnetic Field (B) = 1 × 10⁻⁵ T
We already know that
Mass of electron (m) = 9.1 × 10⁻³¹ kg
Charge on electron (q) = 1.6 × 10⁻¹⁹ C
According to the formula
Radius of circular path(r) = mass on electron × speed/ Charge × Magnetic field
Radius of circular path(r) = m × v/q × B
Put the values into the formula
r = 9.1 × 10⁻³¹ × 7.5 × 10⁶/ 1.6 × 10⁻¹⁹ × 10⁻⁵
On solving, we get
r = 4.266 m
Hence, 4.266 m is the radius of the circular path the electron follows.
Learn more about magnetic field here brainly.com/question/26257705
#SPJ4
Answer:
<u>receive continuous signals from a ground transmitter</u>
Explanation:
Remember a <u>synchronous orbit is synchronous in the sense that it has equal rotational period to the body orbiting having the same direction of rotation as that body</u>. An example of this is the Moon and the planet earth.
Thus it allows continuous signals to be sent from a ground transmitter and received by a space object.
Tearing paper
Breaking your pencil
Chopping down a tree
Breaking Mom's favorite vase ... I did that one before :)
Those are some examples of physical changes happening around us
Answer:
The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.
Explanation:
Given:-
- The diameter of the drill bit, d = 98 cm
- The power at which drill works, P = 5.85 hp
- The rotational speed of drill, N = 1900 rpm
Find:-
What Torque And Force Is Applied To The Drill Bit?
Solution:-
- The amount of torque (T) generated at the periphery of the cutting edges of the drilling bit when it is driven at a power of (P) horsepower at some rotational speed (N).
- The relation between these quantities is given:
T = 5252*P / N
T = 5252*5.85 / 1900
T = 16.171 Nm
- The force (F) applied at the periphery of the drill bit cutting edge at a distance of radius from the center of drill bit can be determined from the definition of Torque (T) being a cross product of the Force (F) and a moment arm (r):
T = F*r
Where, r = d / 2
F = 2T / d
F = 2*16.171 / 0.98
F = 33 N
Answer: The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.