Answer:
3.57 m/s
Explanation:
The sum of the 2 momentums Is equal the finale momentums. so if momentums Is q, v Is velocity and m Is Mass, q3=m1*v1+m2**v2=16+9=25 m*kg/s
q3=m3*v3
v3=q3/m3=25/(4+3)=3.57m/s
Answer:
particle's potential energy = 70J
Explanation:
From conservation of energy; K1 + Ue1 = K2 + Ue2
where K1 and K2 are the kinetic energies at two positions and Ue1 and Uue2 are the electrical potential energies at two positions.
k1 = 10J, Ue1 = 100J
K2 = 40J
substitute into K1 + Ue1 = K2 + Ue2
Ue2 = K1 + Ue1 - K2
= 10 +100 - 40
Ue2 = 70J
The ideal gas law.
PV=nRT
P=presure
V=volume
n=number of moles
R=Gas costant
T=temperature.
Answer: a. Number of moles.
Mechanics is dealing with forces that are effecting some body, electrostatics is about electrical fields of not moving bodies, and quantum mechanics is dealing with quantum states of atoms.
Thermodynamics as the word say, is dealing with thermal energy that is moving (transferring from one body to another or even better from one medium to another).
Answer is C <span />
Answer: 1. h
Explanation:
The block would reach exactly the same height from the ground. It would travel a greater distance away from the source, but the height away from the earth would remain the same as you are giving it the same energy each time. Therefore, it will reach the same gravitation potential energy.
Another approach to look at it this is seeing it when the Block moves up the slope, its kinetic energy decreases and the potential energy increases. In both cases, the kinetic energy decreases by same amount, therefore the block rises to same height H.
Try to use the formula;
1/2MV2 = mgh
Where V = √(2gh)
I hope this helps