1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iogann1982 [59]
3 years ago
8

In a Broadway performance, an 77.0-kg actor swings from a R = 3.65-m-long cable that is horizontal when he starts. At the bottom

of his arc, he picks up his 55.0-kg costar in an inelastic collision. What maximum height do they reach after their upward swing?
Physics
1 answer:
krek1111 [17]3 years ago
3 0

Answer: h =1.22 m

Explanation:

from the question we were given the following

mass of performer ( M1 ) = 77 kg

length of cable ( R ) = 3.65 m

mass of costar ( M2 ) = 55 kg

maximum height (h) = ?

acceleration due to gravity (g) = 9.8 m/s^2  (constant value)

We first have to find the velocity of the performer. From the work energy theorem work done = change in kinetic energy

work done = 1/2 x mass x ( (final velocity)^2 - (initial velocity)^2 )

initial velocity is zero in this case because the performer was at rest before swinging, therefore

work done = 1/2 x 77 x ( v^2 - 0)

work done = 38.5 x ( v^2 ) ......equation 1

work done is also equal to m x g x distance ( the distance in this case is the length of the rope), hence equating the two equations we have

m x g x R =  38.5 x ( v^2 )

77 x 9.8 x 3.65 =  38.5 x ( v^2 )

2754.29 = 38.5 x ( v^2 )

( v^2 ) =  71.54

v = 8.4 m/s  ( velocity of the performer)

After swinging, the performer picks up his costar and they move together, therefore we can apply the conservation of momentum formula which is

initial momentum of performer (P1) + initial momentum of costar (P2) = final momentum of costar and performer after pick up (Pf)  

momentum = mass x velocity therefore the equation above now becomes

(77 x 8.4) + (55 x 0) = (77 +55) x Vf  

take note the the initial velocity of the costar is 0 before pick up because he is at rest

651.3 = 132 x Vf

Vf = 4.9 m/s

the performer and his costar is 4.9 m/s after pickup

to finally get their height we can use the energy conservation equation for from after pickup to their maximum height. Take note that their velocity at maximum height is 0

initial Kinetic energy + Initial potential energy = Final potential energy + Final Kinetic energy

where

kinetic energy = 1/2 x m x v^2

potential energy  = m x g x h

after pickup they both will have kinetic energy and no potential energy, while at maximum height they will have potential energy and no kinetic energy. Therefore the equation now becomes

initial kinetic energy = final potential energy

(1/2 x (55 + 77) x 4.9^2) + 0 = ( (55 + 77) x 9.8 x h) + 0

1584.7 = 1293 x h

h =1.22 m

You might be interested in
Please help: I don't know how to do these problems
antiseptic1488 [7]
d =2.55.68m and t = 11.36s
In my opinion
3 0
3 years ago
In this problem, you will practice applying this formula to several situations involving angular acceleration. In all of these s
riadik2000 [5.3K]

Answer:

Part a)

\alpha = \frac{2(m_1 - m_2)g}{(m_1 + m_2)L}

Part b)

\alpha = \frac{6(m1 - m_2)g}{3(m_1 + m_2)L + m_{bar}L}

Explanation:

As we know that the see saw bar is massless so here torque due to two masses is given as

\tau = I\alpha

here we will have

\tau = (m_1g - m_2g)(\frac{L}{2})

now we will have inertia of two masses given as

I = (m_1 + m_2)(\frac{L}{2})^2

now we have

I = (m_1 + m_2)\frac{L^2}{4}

now the angular acceleration is given as

\alpha = \frac{\tau}{I}

so we have

\alpha = \frac{2(m_1 - m_2)g}{(m_1 + m_2)L}

Part b)

Now if the rod is not massles then we will have total inertia given as

I = (m_1 + m_2)(\frac{L}{2})^2 + \frac{m_{bar}L^2}{12}

so we will have

I = (m_1 + m_2)\frac{L^2}{4} + \frac{m_{bar}L^2}{12}

now the acceleration is given as

\alpha = \frac{\tau}{I}

\alpha = \frac{6(m1 - m_2)g}{3(m_1 + m_2)L + m_{bar}L}

7 0
3 years ago
Example of items that changed chemically
Ostrovityanka [42]
Burning of gases is one the example of chemical change
3 0
3 years ago
Add a picture of leaves.
iren2701 [21]

Answer:

There you go

Explanation:

 

6 0
3 years ago
Can somebody please answer this correctly I will give brainliest
vodka [1.7K]
I think what’s wrong is that the paper clip isn’t connecting to the other thing on the bottom
8 0
2 years ago
Other questions:
  • Because of the costs involved in maintaining high temperatures and pressure, nuclear method for generating electrical energy. is
    5·2 answers
  • Little Susie is enjoying a nice spherical lollipop. She sucks the lollipop in such away that the circumference decreases by 1 ce
    15·1 answer
  • How would the body be affected if red blood cells and low levels of homoglobinHow would the
    5·1 answer
  • Choose heated air or cooled air for the following atmospheric property term: rises
    5·1 answer
  • Which one of the following is radical?<br>a.NH4+<br>b.CUSO4<br>c.CH4<br>d.NH3​
    5·1 answer
  • Why is the amount of mechanical energy produced less than the amount of electrical energy used?
    8·2 answers
  • What does it depend on
    11·1 answer
  • How radio wave carry information?​
    12·1 answer
  • Violet light of wavelength 405 nm ejects electrons with a maximum kinetic energy of 0.890 eV from a certain metal. What is the b
    15·1 answer
  • 1.si un automovil de 3000 kg se desplaza a 40 m/s su energía cinética es igual a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!