aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Answer:
A) Force = 2303.925 N in the negative x-direction
B) F ≈ 143998.28 N
C) Ratio = 62.5
Explanation:
A) Since the brakes are the only thing making the van to come to a stop, then first of all, we will calculate the force (in a component along the direction of motion of the car) that the brakes will apply on the van.
Let's find the deceleration using Newton's law of motion formula;
v² = u² + 2as
where;
v = final velocity,
u = initial velocity,
s = displacement
a = acceleration
We are given;
u = 87.5 km/h = 24.3056 m/s
s = 125 m
v = 0 m/s
Thus;
0 = (24.3056)² + 2a(125)
- (24.3056)²= 250a
a = - 24.3056²/250
a = - 2.363 m/s²
Now, force = mass × acceleration
We are given mass = 975 kg
Thus;
Force = 975 x (-2.363)
Force = 2303.925 N in the negative x-direction
B) formula for kinetic energy is
KE = ½mv²
KE = ½(975)(24.3056)²
= 287996.568288 J
Work done on impact = F x 2
Thus;
2F = 287996.568288
F = 287996.568288/2
F ≈ 143998.28 N
C) Ratio = Force on car/braking force = 143998.284/2303.925 = 62.5
Answer:
If you remember your username and password when you set up brianly. Uninstall it and then reinstall then put your information in. Then if that dont work send them a message telling them what's going on
Answer:
v = 384km/min
Explanation:
In order to calculate the speed of the Hubble space telescope, you first calculate the distance that Hubble travels for one orbit.
You know that 37000 times the orbit of Hubble are 1,280,000,000 km. Then, for one orbit you have:

You know that one orbit is completed by Hubble on 90 min. You use the following formula to calculate the speed:

hence, the speed of the Hubble is approximately 384km/min
Complete Question
The kinetic energy K of an object of mass m moving at a speed v is defined as . It seems reasonable to say that the speed of an object--and, therefore, its kinetic energy--can be changed by performing work on the object. In this problem, we will explore the mathematical relationship between the work done on an object and the change in the kinetic energy of that object.
Let us now consider the situation quantitatively. Let the mass of the sled be m and the magnitude of the net force acting on the sled be The sled starts from rest.
Consider an interval of time during which the sled covers a distance s and the speed of the sled increases from v_1 to v_2. We will use this information to find the relationship between the work done by the net force (otherwise known as the net work) and the change in the kinetic energy of the sled.
Find the net force acting on the sled.
Express your answer in terms of some or all of the variables m,s,
, and v_2.
Answer:
The expression is
Explanation:
From the question we are told that
The net force is 
The distance is s
The first velocity is 
The second velocity is 
The mass is m
Generally the work energy theorem is mathematically represented as
Also from the law energy conservation workdone is mathematically represented as

Here
is the change in kinetic energy and this is mathematically represented as
So

Here

Hence

So
=>