The answer is 5kg m/s with the second momentum being 10 kg m/s. i took the test and it was right. hope this helps yalls
Answer:
You drop a rock from rest out of a window on the top floor of a building, 30.0 m above the ground. When the rock has fallen 3.00 m, your friend throws a second rock straight down from the same window. You notice that both rocks reach the ground at the exact same time. What was the initial velocity of the ...... rest out of a window on the top floor of a building, 30.0m above the ground. ... You Notice That Both Rocks Reach The Ground At The Exact Same Time. ... You drop a rock from rest out of a window on the top floor of a building, 30.0m ... When the rock has fallen 3.20 m, your friend throws a second rock straight down from ...

GiveN:
- Initial velocity = 9.8 m/s²
- Accleration due to gravity = -9.8 m/s²
- Time taken = 1 s
To FinD:
- Final velocity of the ball?
Step-by-step Explanation:
Using the first Equation of motion,
⇒ v = u + gt
⇒ v = 9.8 + -9.8(1)
⇒ v = 0 m/s
The final velocity is hence <u>0</u><u> </u><u>m</u><u>/</u><u>s</u><u>.</u>
<h3>
Note:</h3>
- While solving questions of under gravity motions using equations of motion, remember the sign convection to avoid mistakes.
- You can consider positive above the ground and negative for towards it.
D, Mercury as a weaker gravitational pull! Due to mercury being farther from the sun and it being a smaller planet it has a weaker pull
Answer:
Please find the answer in the explanation.
Explanation:
Given that 16 g CH4 + 64 g 02 - 44 g CO2 + 36g H2O
To explain the law of conservation of mass and describe how the equation represents the law of conservation of mass, let me first start from law.
The law state that: mass can neither be created nor destroyed.
The mass of each element at the reaction side must be equal or the Same with the magnitude of mass at the product
The equation represents the law of conservation of mass because the mass of molecules at the right hand side is equal to or balance with the molecules at the left hand side. For example, the number of Oxygen, and othe elements are the at both side.