When both sides of an equation give the same units, same numerical values, and same concept we refer to the equation as being correct. ... Removing constants from correct equations make them homogeneous but incorrect.
Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Answer:
where are the statements?
Explanation:
Answer:
Width of the slit will be equal to 1.47 mm
Explanation:
We have given wavelength of the light 
Distance D = 8 m
Distance between first minimum dark fringe and the central maximum is 2 mm
So 
We have to find the width of the slit
For the first order wavelength is equal to
, here a width of slit
So 
So width of the slit will be equal to 1.47 mm
Answer:
a)Q=71.4 μ C
b)ΔV' = 10.2 V
Explanation:
Given that
C ₁= 8.7 μF
C₂ = 8.2 μF
C₃ = 4.1 μF
The potential difference of the battery, ΔV= 34 V
When connected in series
1/C = 1/C ₁ + 1/C₂ + 1/C₃
1/ C= 1/8.4 +1 / 8.4 + 1/4.2
C=2.1 μF
As we know that when capacitor are connected in series then they have same charge,Q
Q= C ΔV
Q= 2.1 x 34 μ C
Q=71.4 μ C
b)
As we know that when capacitor are connected in parallel then they have same voltage difference.
Q'= C' ΔV'
C'= C ₁+C₂+C₃ (For parallel connection)
C'= 8.4 + 8.4 + 4.2 μF
C'=21 μF
Q'= C' ΔV'
Q'=3 Q
3 x 71.4= 21 ΔV'
ΔV' = 10.2 V