I'm pretty sure that significant figures is just the amount of numbers there is. So, in this case I think the answer would be D. 5
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number =
h = Planck's constant =
c = speed of light =
Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
Acid Sorry if I am wrong but I am pretty positive it’s acid
Answer:
0.04838J
Explanation:
Heat is a form of energy that is transferred from one body to another as the result of a difference in temperature between the bodies , here heat is added to the water as a result of temperature change of 0.364 degreesC
Given:change in temperature=0.364
Mass of water=0.0318g
But we need specific heat capacity of water which is
4.2 J/g°C
Then we can calculate How much heat is added by using below formula
Energy = Mass * specific heat capacity *(change in temperature)
energy =0.0318g* 4.18g*0.364
=0.04838J
As with the properties of a substance, the changes that substances undergo can be classified as either physical or chemical. During physical changes a substance changes its physical appearance, but not its composition. The evaporation of water is a physical change.
(I searched that up but here’s an explanation with my own words that you can use):
Change in matter can be classified as a physical change as well as a chemical change due to the properties of substance. A physical change changes substance within its appearance but not its composition. For an example: The evaporation of water is a physical change.
There you go hopefully that helped