Answer:
The vertex of this parabola,
, can be found by completing the square.
Step-by-step explanation:
The goal is to express this parabola in its vertex form:
,
where
,
, and
are constants. Once these three constants were found, it can be concluded that the vertex of this parabola is at
.
The vertex form can be expanded to obtain:
.
Compare that expression with the given equation of this parabola. The constant term, the coefficient for
, and the coefficient for
should all match accordingly. That is:
.
The first equation implies that
is equal to
. Hence, replace the "
" in the second equation with
to eliminate
:
.
.
Similarly, replace the "
" and the "
" in the third equation with
and
, respectively:
.
.
Therefore,
would be equivalent to
. The vertex of this parabola would thus be:
.
Using a table of values, the outputs of f(x) for whole numbers are 0, 1, 4, 9, 16, 25, 36, and so on. For the same input values, g(x) has outputs of 1, 2, 4, 8, 16, 32, and 64. Continuing to double the output each time results in larger outputs than those of f(x). The exponential function, g(x), has a constant multiplicative rate of change and will increase at a faster rate than the quadratic function.
(ed. just click all of them)
Not 100% sure but it might be B
It depends on what way the figure is translated, but it's possible it could be a dilations, reflection, rotation, etc.
A= (a+b+c)h is the formula. I hope this is helpful for you. I am pretty positive it will help.