Answer:
76.74 Hz
Explanation:
Given:
Wave velocity ( v ) = 330 m / sec
wavelength ( λ ) = 4.3 m
We have to calculate Frequency ( f ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 330 / 4.3 Hz
= > f = 3300 / 43 Hz
= > f = 76.74 Hz
Hence, frequency of sound is 76.74 Hz.
+1
An electron has a negative charge so losing a charge of -1 from an uncharged, or neutral, atom will leave an ion with a positive charge.
Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Answer:
if i'm not mistaken that's either a plug in cord for a certain device, or what i am assuming to be a usb software cord.
Explanation: