Answer:
40 s
Explanation:
After 10 seconds, the first skater would have a 8m/s * 10s = 80 m head start
Let t be the number of seconds after the second skater starts will the second skater overtake the first skater
The distance traveled by the first skater after t seconds is

Similarly the distance traveled by the 2nd skater after t seconds is

Since the 2nd skater catches up to the 1st one after 80 m behind, the distance traveled by the 2nd one must be 80m greater than the distance of the 1st skater

We can substitute 



1.Paper Chromatography. This method is often used in the food industry. ...
2.Filtration. This is a more common method of separating an insoluble solid from a liquid. ...
3.Evaporation. ...
4Simple distillation. ...
Fractional distillation.
Answer:
True
Explanation:
Velocity is a vector quantity, which means that it carries both magnitude and direction. Hence when direction of a particle changes, although magnitude (speed) may remain same, it's velocity changes due to direction change. For ex. A particle is m... A particle is moving along x axis with speed 1m/s, it's velocity will be represented as 1i (i represents unit vector along x)
But if it now starts moving along y axis, it's velocity is 1j (j represents unit vector along y axis). Hence velocity changes with direction.
brainllest pls .
In the first direct detection of gravitational waves by LIGO in 2015, the waves came from the merger of two black holes. Option B is correct. This is further explained below.
<h3>What are gravitational waves?</h3>
A gravitational wave is simply defined as a ripple in space that is unseen though extremely rapid. Gravitational waves move at light speed. As they pass past, these waves compress and stretch everything in their path.
In conclusion, the merger of two black holes is the first direct detection of gravitational waves.
Read more about Wave
brainly.com/question/23271222
#SPJ1
Here we have perfectly inelastic collision. Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We are given information:
m₁=0.5kg
m₂=0.8kg
v₁=3m/s
v₂=2m/s
v'₁=v'₂=x
0.5*3 + 0.8*2 = 0.5*x + 0.8*x
1.5 + 1.6 = 1.3x
3.1 = 1.3x
x = 2.4 m/s