Given,
the initial velocity = 0 m /s.
acceleration = 3.20 m / s^2
time = 32.8 s
According to laws of motion.
s = ut + 1/2 at ^2
s = 1/2 at²
s=1/2(3.20)(32.8)²
s= 1721.344 m
the distance traveled before takeoff is 1731.3m
An object that has kinetic energy must be <em>moving</em>.
The formula for an object's kinetic energy is
KE = (1/2) · (the object's mass) · <u><em>(the object's speed)²</em></u>
As you can see from the formula, if the object has no speed, then its kinetic energy is zero. That's why kinetic energy is usually called the "energy of motion", and if an object HAS kinetic energy, then that tells you right away that it must be moving.
Answer:
840000 J/min
Explanation:
Area = A = 0.1 m²
Bottom of pot temperature = 200 °C
Thermal conductivity = k = 14 J/sm°C
Thickness = L = 1 cm = 0.01 m
Temperature of boiling water = 100 °C
From the law of heat conduction
Q = kAΔT/L
⇒ Q = 14×0.1×(200-100)/0.01
⇒ Q = 14000 J/s
Converting to J/minute
Q = 14000×60 = 840000 J/min
∴ Heat being conducted through the pot is 840000 J/min
The heat transferred by the steam to the skin is given by

where
m is the mass of the steam

is the latent heat of vaporization.
In our problem, the mass of the steam is (converting into kg)

while the latent heat of vaporization of the steam is

Substituting into the previous formula, we find the heat transferred to the skin: