Answer:
The lethal voltage for the electrician under those conditions is 126.5 V.
Explanation:
To discover what is the lethal voltage to the electrician we need to find out what is the voltage that produces 55 mA = 0.055 A when across a resistance of 2300 Ohms (Electrician's body resistancy). For that we'll use Ohm's Law wich is expressed by the following equation:
V = i*R
Where V is the voltage we want to find out, i is the current wich is lethal to the electrician and R is his body resistance. By applying the given values we have:
V = 0.055*2300 = 126.5 V.
The lethal voltage for the electrician under those conditions is 126.5 V.
Answer:
The reactance of the capacitor
Explanation:
In an AC circuit containing different elements (capacitors, resistors and inductors), we cannot simply calculate the equivalent resistance of the circuit, so another quantity is used, which is called reactance.
For a capacitor, the reactance is given by:

where:
f is the frequency of the AC current in the circuit
C is the capacitance of the capacitor
The reactance has a similar meaning to that of the resistance for a DC current. In fact, we notice that:
- When f=0 (which means we are in regime of DC current, because the current never changes direction), the reactance is infinite. This is correct: in a DC circuit, the capacitor does not let current pass through it, so it like it has infinite resistance (=infinite reactance)
- When f tends to infinite, the reactance becomes zero: in such situation, the current in the circuit changes direction so quickly that the capacitor has no enough time to "block" the current in the circuit, so it like it has almost zero resistance (zero reactance).
Answer:
The angular acceleration α = 14.7 rad/s²
Explanation:
The torque on the rod τ = Iα where I = moment of inertia of rod = mL²/12 where m =mass of rod and L = length of rod = 4.00 m. α = angular acceleration of rod
Also, τ = Wr where W = weight of rod = mg and r = center of mass of rod = L/2.
So Iα = Wr
Substituting the value of the variables, we have
mL²α/12 = mgL/2
Simplifying by dividing through by mL, we have
mL²α/12mL = mgL/2mL
Lα/12 = g/2
multiplying both sides by 12, we have
Lα/12 × 12 = g/2 × 12
αL = 6g
α = 6g/L
α = 6 × 9.8 m/s² ÷ 4.00 m
α = 58.8 m/s² ÷ 4.00 m
α = 14.7 rad/s²
So, the angular acceleration α = 14.7 rad/s²
Answer:
<h2>Migration is affected by various factors like age, sex, marital status, education, occupation, employment etc. Age and sex are main demographic factors that affect the migration. Men, generally, migrate to other places quite often though there are more women who migrate to husbands' places after marriage.</h2>
Y₀ = initial position of the balloon at the top of the building = 44 m
Y = final position of the balloon at halfway down the building = 44/2 = 22 m
a = acceleration of the balloon = - 9.8 m/s²
v₀ = initial velocity of the balloon = 0 m/s
v = final velocity of the balloon = ?
using the kinematics equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 0² + 2 (- 9.8) (22 - 44)
v = 20.78 m/s