1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solmaris [256]
3 years ago
15

What is the total mechanical energy of a 200 kg roller coaster moving with a velocity of 16 m/s at a height of 18 m above the gr

ound?
Physics
1 answer:
Travka [436]3 years ago
8 0

Mechanical Energy = PE + KE

PE: mgh = 200 x 9.8 x 18 = 35280

PE: 35280 Joules

KE: 1/2mv^2 = 1/2 x 200 x 16^2 = 25600

KE: 25600 Joules

ME: 35280 + 25600

ME: 60,880J

You might be interested in
A baseball player friend of yours wants to determine his pitching speed. you have him stand on a ledge and throw the ball horizo
zhenek [66]

Answer:

The pitching speed of your friend is 33.20 m/s

Explanation:

<em>Lets explain how to solve the problem</em>

Your friend throw the ball horizontally that means the vertical initial

component of velocity is zero (u_{y}=0).

The ball is thrown from a height 4 meters above the ground.

The height h=u_{y}t+\frac{1}{2}gt^{2}

<u><em>Remember:</em></u> the height is negative value because its below the point of

thrown (initial position)

h = -4 m , u_{y}=0 and g = -9.8 m/s²(downward)

<em>Substitute these values in the rule above</em>

⇒ 4=0-\frac{1}{2}(9.8)t^{2}

⇒ -4 = -4.9t² (multiply both sides by -1)

⇒ 4 = 4.9t² (divide both sides by 4.9)

⇒ 0.81633 = t² (take √ for both sides)

⇒ <em>t = 0.9035</em>

Then the time of the ball to land on the ground is 0.9035 seconds

The range of the ball on the ground is 30 m

The range R=u_{x}*t, where u_{x} is the horizontal

component of the initial velocity

R = 30 meters and t = 0.9035

⇒ 30=u_{x}(0.9035) (divide both sides by 0.9035)

⇒ u_{x}=33.20 m/s

<em>The pitching speed of your friend is 33.20 m/s </em>

4 0
3 years ago
When you boil potatoes, will your cooking time be reduced with vigorously boiling water instead of gently boiling water? (Direct
lara [203]

Answer:

The cooling time will not be reduced.

Explanation:

The time to cook is virtually the same in both types, vigorously and gently boiling water.

The reason cooking of spaghetti  calls for vigorously boiling water is to keep the pasta agitated so that they do not stick to one another.

The temperature of boiling water is the same for both vigorously boiling water and gently boiling water, therefore there will be little time difference in when the potatoes will cook when it is done with vigorously boiling water than when it is cooked with gently boiling water.

However cooking potatoes in vigorously boiling water may cause the water to dry up on time and the potatoes get burnt.

8 0
2 years ago
A 55.0-g sample of hot metal initially at 99.5oC was added to 40.0 g of water in a Styrofoam coffee cup calorimeter. The water a
Kaylis [27]

Answer:

Cp= 0.44 J/g.C

This is heat capacity of metal.

Explanation:

From energy conservation

Heat lost by metal = Heat gain by water +Heat gain by  calorimeter

Because here temperature of metal is high that is why it loose the heat.The temperature of water and  calorimeter is low that is why they gain the heat.

final temperature is T= 30.5 C

We know that sensible heat transfer given as

Q= m Cp ΔT

m=Mass

Cp=Specific heat capacity

ΔT=Temperature difference

By putting the values

55 x Cp ( 99.5 - 30.5) = 40 x 4.184 ( 30.5- 21 ) + 10 x ( 30.5 - 21)

Cp ( 99 .5- 30.5) = 30.65

Cp= 0.44 J/g.C

This is heat capacity of metal.

4 0
3 years ago
10. How far does a transverse pulse travel in 1.23 ms on a string with a density of 5.47 × 10−3 kg/m under tension of 47.8 ?????
KATRIN_1 [288]

Answer: Tension = 47.8N, Δx = 11.5×10^{-6} m.

              Tension = 95.6N, Δx = 15.4×10^{-5} m

Explanation: A speed of wave on a string under a tension force can be calculated as:

|v| = \sqrt{\frac{F_{T}}{\mu} }

F_{T} is tension force (N)

μ is linear density (kg/m)

Determining velocity:

|v| = \sqrt{\frac{47.8}{5.47.10^{-3}} }

|v| = \sqrt{0.00874 }

|v| = 0.0935 m/s

The displacement a pulse traveled in 1.23ms:

\Delta x = |v|.t

\Delta x = 9.35.10^{-2}*1.23.10^{-3}

Δx = 11.5×10^{-6}

With tension of 47.8N, a pulse will travel Δx = 11.5×10^{-6}  m.

Doubling Tension:

|v| = \sqrt{\frac{2*47.8}{5.47.10^{-3}} }

|v| = \sqrt{2.0.00874 }

|v| = \sqrt{0.01568}

|v| = 0.1252 m/s

Displacement for same time:

\Delta x = |v|.t

\Delta x = 12.52.10^{-2}*1.23.10^{-3}

\Delta x = 15.4×10^{-5}

With doubled tension, it travels \Delta x = 15.4×10^{-5} m

4 0
3 years ago
A forklift raises a 72-kg crate onto a shelf 3.6 meters above the floor. How much gravitational potential energy does the crate
Mademuasel [1]

Answer:

<h2>2540.16 J</h2>

Explanation:

The gravitational potential energy of a body can be found by using the formula

GPE = mgh

where

m is the mass

h is the height

g is the acceleration due to gravity which is 9.8 m/s²

From the question we have

GPE = 72 × 9.8 × 3.6 = 2540.16

We have the final answer as

<h3>2540.16 J</h3>

Hope this helps you

8 0
2 years ago
Other questions:
  • A football punter accelerates a .55 kg football
    5·1 answer
  • Which statement represents a difference between horizontal and vertical relationships?
    5·1 answer
  • Which of the following are examples of acceleration?
    6·2 answers
  • The magnetic field lines of a bar magnet spread out from the north end to the south end. South end to the north end. Edges to th
    15·2 answers
  • Why is a cell theory a theory and not a law
    9·1 answer
  • Go to the roller coaster simulation and click on the “launch” button. Pay attention to the pie chart as the roller coaster moves
    9·2 answers
  • Most stars are main-sequence stars, a group of stars for which size, mass, surface temperature, and radiated power are closely r
    11·1 answer
  • What is the mass of an object travelling at 25 m/s with a kinetic energy of 3775 J?
    14·1 answer
  • A mass hanged on a spring scale. what is the force exerted by gravity on 700g ?
    13·1 answer
  • I need to write a police story.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!