Tycho Brahe ( 1546 - 1601 ) was a Danish astronomer known for his accurate astronomical and planetary observations. Tycho tried to produce a model with the best of both Ptolemy ( earth-centered solar system ) and Copernicus ( sun-centered solar system ).
Answer: B ) observation.
Answer:
A
Explanation:
A. The molecules that make up olive oil are longer than those that
make up alcohol, so they have more resistance to sliding past one
another.
Olive oils are unsaturated fats with many carbons whereas, alcohols are typically short with very few carbons.
Answer:
1.85 J/K
Explanation:
The computation of total change in entropy is shown below:-
Change in Entropy = Sum Q ÷ T
= 

= -3.12 + 4.97
= 1.85 J/K
Therefore for computing the total change in entropy we simply applied the above formula.
As we can see that there is heat entering the reservoir so it will be negative while cold reservoir will be positive else the process would be impossible.
Answer:
a) The student must run flight of stairs to lose 1.00 kg of fat 709.5 times.
b) Average power
P(w)= 1062.07 [w]
P(hp)=1.42 [hp]
c) This activity is highly unpractical, because the high amount of repetitions he has to due in order to lose, just 1 Kg of fat.
Explanation:
First, lets consider the required amount of work to move the mass of the student. (considering running stairs just as a vertical movement)
Work:

Where m is the mass of the student, g is gravity (9.8 m/s) and d is the total distance going up the stairs (0.15m *85steps= 12.75m )
![W= F*d= m*g*d=85* 9.8*12.75=10620.75 [J]](https://tex.z-dn.net/?f=W%3D%20F%2Ad%3D%20m%2Ag%2Ad%3D85%2A%209.8%2A12.75%3D10620.75%20%5BJ%5D)
Converting from Joules to Kcals:

Now lets take into account the efficiency of the human body (20%)
2.537 ---> 20%
x ---> 100%

So the student is consuming 12.685 KCals each time he runs up the stairs.
Now,
1 g --> 9 Kcals
1000 g --> 9000KCals
Burning 1 g of fat, requieres 9 KCals, 1000g burns 9000KCals. So in order to burn a 1Kg of fat:

He must run up the stairs 709.5 times, to burn 1 Kg of fat.
********************
For b) just converting units, taking into account the time lapse. (53103.75 is the 100% of the energy in joules, from converting 12.685Kcals to joules)
![Power=\frac{Joules}{Seconds} =\frac{53103.75}{50} =1062.075 [W]\\](https://tex.z-dn.net/?f=Power%3D%5Cfrac%7BJoules%7D%7BSeconds%7D%20%3D%5Cfrac%7B53103.75%7D%7B50%7D%20%3D1062.075%20%5BW%5D%5C%5C)
![P(hp)=\frac{P(w)}{745.7} =\frac{1062.075}{745.7} =1.42[hp]](https://tex.z-dn.net/?f=P%28hp%29%3D%5Cfrac%7BP%28w%29%7D%7B745.7%7D%20%3D%5Cfrac%7B1062.075%7D%7B745.7%7D%20%3D1.42%5Bhp%5D)
*****