For these two questions, first you need to know that the voltage across each branch of a parallel circuit is the same.
So, for Q5, we can first find out the voltage across R₂ by V=IR.
Voltage across R₂ = 2.5 × 8 = 20V
Since R₂ and R₃ are in parallel circuit, their voltage should be the same. Thus, voltage across R₃ is 20V.
So, by V=IR,
current of R₃ =
= 5A
Q6. voltage across R₁ = 2 × 4 = 8V
∴voltage across R₂ = 8V
current of R₂ =
= 1A
<h3><u>Alternative method</u></h3>
From these two examples, you can find out that the current of each branch of the parallel circuit is inversely proportional to the resistance of the branch.
ie. for Q5,
= 
= 
I₃ = 5A
Q6.
= 
= 
I₂ = 1A
Answer:
F = 768 N
Explanation:
It is given that,
Speed of the elevator, v = 3.2 m/s
Grain drops into the car at the rate of 240 kg/min, 
We need to find the magnitude of force needed to keep the car moving constant speed. The relation between the momentum and the force is given by :


Since, the speed is constant,



F = 768 N
So, the magnitude of force need to keep the car is 768 N. Hence, this is the required solution.
Answer:
Two identical spheres are released from a device at time t = 0 from the same ... Sphere A has no initial velocity and falls straight down. ... (b) On the axes below, sketch and label a graph of the horizontal component of the velocity of sphere A and of sphere B as a function of time. ... Which ball has the greater vertical velocity
Explanation:
Answer:
The number of atoms is 
Explanation:
From the question we are told that
The mass of coin is 
Number of atom in one mole = 
Molar mass of nickel 
Now the relation to obtain the number of atom in the nickel coin is



We can apply the law of conservation of energy here. The total energy of the proton must remain constant, so the sum of the variation of electric potential energy and of kinetic energy of the proton must be zero:

which means

The variation of electric potential energy is equal to the product between the charge of the proton (q=1eV) and the potential difference (

):

Therefore, the kinetic energy gained by the proton is

<span>And since the initial kinetic energy of the proton was zero (it started from rest), then this 1000 eV corresponds to the final kinetic energy of the proton.</span>