Answer:
(A) N4H6 (B) H2O (C) LiH (D) C12H26
Explanation:
The given compounds have been arranged from left to right in order of increasing percentage by mass of hydrogen.
The percent by mass of hydrogen can be calculated by mass of hydrogen in that compound divided by total mass of that compound and finally multiplying the result with 100 to obtain the required percentage.
Answer:
Pop for two minutes in the microwave, and enjoy the perfect balance of buttery and salty taste in every bite. Try this delicious salty snack for backyard barbeques, movie nights, birthday parties or an office snack. Choose ACT II Butter Popcorn for the best value in popcorn.
Explanation:
Answer:
Multiply 1.25 by 0.04 and divide the result obtained by 1,000
Explanation:
Given: [1 gram = 0.04 ounce, 1 liter = 1,000 milliliter]
1.25 x 0.04 = 0.05 oz
Therefore, 0.05 per 1,000 milliliter
0.05 ÷ 1,000 = 0.00005 oz
Therefore, the density of the gas is 0.00005 oz/mL
Hope this helps! :)
Answer:
1.552 moles
Explanation:
First, we'll begin by writing a balanced equation for the reaction showing how C8H18 is burn in air to produce CO2.
This is illustrated below:
2C8H18 + 25O2 -> 16CO2 + 18H2O
Next, let us calculate the number of mole of C8H18 present in 22.1g of C8H18. This is illustrated below:
Molar Mass of C8H18 = (12x8) + (18x1) = 96 + 18 = 114g/mol
Mass of C8H18 = 22.1g
Mole of C8H18 =..?
Number of mole = Mass /Molar Mass
Mole of C8H18 = 22.1/144
Mole of C8H18 = 0.194 mole
From the balanced equation above,
2 moles of C8H18 produced 16 moles of CO2.
Therefore, 0.194 mole of C8H18 will produce = (0.194x16)/2 = 1.552 moles of CO2.
Therefore, 1.552 moles of CO2 are emitted into the atmosphere when 22.1 g C8H18 is burned