Answer:
Rutherford bombarded aluminum foil with beam of light known as alpha particles. The mass of this alpha particle is equivalent to helium atom.
Explanation:
Rutherford bombarded aluminum foil with beam of light known as alpha particles. The mass of this alpha particle is equivalent to helium atom.
When this alpha particles were made to strike the aluminum foil, some passed through the foil, some were reflected and speed others changed.
The ones reflected encountered heavier particle known as the nucleus, preventing them from passing through it. The whole observations indicated that atom is not is uniformly charged sphere as proposed by J.J Thomson.
Rutherford proposed new model known as the Planetary model of atom, which described atom as containing a nucleus which is revolved by electron, just like planets revolve round the sun. And this nucleus contains opposite charge to electron which is proton, to balance the motion.
Answer:
no they can't talk to each other bcoz of the lack of atmosphere.
Explanation:
l hope it helps you
Answer:
Explanation:
Initial momentum is 1.5e6(3) = 4.5e6 kg•m/s
An impulse results in a change of momentum
The tug applied impulse is 12000(10) = 120000 N•s or 0.12e6 kg•m/s
The remaining momentum is 4.5e6 - 0.12e6 = 4.38e6 kg•m/s
The barge velocity is now 4.38e6 / 1.5e6 = 2.92 m/s
The tug applies 0.012e6 N•s of impulse each second.
The initial barge momentum will be zero in
t = 4.5e6 / 0.012e6 = 375 s or 6 minutes and 15 seconds
To stop the barge in one minute(60 s), the tug would have to apply
4.5e6 / 60 = 75000 N•s /s or 75 000 N
Answer:
τ = 132.773 lb/in² = 132.773 psi
Explanation:
b = 12 in
F = 60 lb
D = 3.90 in (outer diameter) ⇒ R = D/2 = 3.90 in/2 = 1.95 in
d = 3.65 in (inner diameter) ⇒ r = d/2 = 3.65 in/2 = 1.825 in
We can see the pic shown in order to understand the question.
Then we get
Mt = b*F*Sin 30°
⇒ Mt = 12 in*60 lb*(0.5) = 360 lb-in
Now we find ωt as follows
ωt = π*(R⁴ - r⁴)/(2R)
⇒ ωt = π*((1.95 in)⁴ - (1.825 in)⁴)/(2*1.95 in)
⇒ ωt = 2.7114 in³
then the principal stresses in the pipe at point A is
τ = Mt/ωt ⇒ τ = (360 lb-in)/(2.7114 in³)
⇒ τ = 132.773 lb/in² = 132.773 psi