Answer:
The mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Explanation:
Moment before = Moment after

where;
I is moment of inertia = Mr² = 0.3 x (0.3)² = 0.027 kg.m²
substitute this in the above equation;
![m = \frac{ 0.027[3(2 \pi) - 2(2 \pi)]} {0.2^2 * 6\pi } = \frac{ 0.027[6 \pi - 4\pi]} {0.2^2 * 4\pi }\\\\m = 0.3375kg](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B%200.027%5B3%282%20%5Cpi%29%20%20-%202%282%20%5Cpi%29%5D%7D%20%7B0.2%5E2%20%2A%206%5Cpi%20%7D%20%3D%20%5Cfrac%7B%200.027%5B6%20%5Cpi%20%20-%204%5Cpi%5D%7D%20%7B0.2%5E2%20%2A%204%5Cpi%20%7D%5C%5C%5C%5Cm%20%3D%200.3375kg)
Therefore, the mass of the sand that will fall on the disk to decrease the is 0.3375 kg
The answer is number (3) if am wrong am sry
The answer is C..........
Answer:
4.5kgm/s
Explanation:
Change in momentum is expressed as
Change in momentum = m(v-u)
M is the mass
V is the final velocity
u is the initial velocity
Given
m=0.45kg
v = 30m/s
u = 20m/s
Substitute
Change in momentum = 0.45(30-20)
Change in momentum = 0.45×10
Change in momentum = 4.5kgm/s
Answer:
60 N
Explanation:
This is just Newton's Second Law
F = m*a
F = ?
m = 12 kg
a = 5 m/^2
F = 5*12 = 60 Newtons