<span>Momentum equals Mass x Velocity
Mass equals 0.1kg
Velocity equals 5m/s
So the momentum has to = 0.1 x 5 = 0.5kgm/s
I hope this helped
</span>
Answer:
2.91 x 10¹² sec
Explanation:
d = distance of nearest star, Proxima Centauri = 4.3 ly = 4.3 x 9.46 x 10¹⁵ m
v = speed of new horizon probe = 14 km/hr = 14000 m/s
t = time taken for the new horizon probe to reach nearest star, Proxima Centauri = ?
Using the equation
d = v t
Inserting the values given
4.3 x 9.46 x 10¹⁵ = (14000) t
t = 2.91 x 10¹² sec
The answer to this question would be:3850ft
To answer this question, you need to convert the speed velocity from miles/hour into feet/second. The equation would be: 750 miles/hour x 5280 foot/mile x 1 hour/3600second = 1100 ft/s
Then multiply the time with the velocity= 3.5 second x 1100 ft/s= 3850ft
Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees