Wave speed = frequency x wavelength
therefore wavelength = wave speed / frequency
the speed of radio waves ( and all electromagnetic waves in vacuum) is 3 x 10^8 meters per second
just put the numbers in now ☺
The significant figures are always:
Different from zero except there are only zeros before the point.
You can round them to the previous significant.
In scientific notation, you have one figure point two more figures.
Examples:
You have 4.21
All different from zero and only two decimals.
Those are all significant figures.
if you have 000.231555
You will shorten this to two significant figures.
Before the point, you only have zeros, so you need to keep only one of them to say its less than one.
After the point, you have a lot of figures, but you need to round this to two.
Because you have a one before the three, you'll keep the three. If you have a five or bigger number, you round it.
In this case, you'll have 0.23 with two significant figures.
According to the fact that t<span>hey both include the reaction change of elements through different processes, there should be a nice connection between them. In math, numbers pose as an element, and in chem - </span><span>elements are physical things. Both of them can change due to reaction or a formula.</span>
Answer:
1+
Explanation:
the number of protons tells you which element it is in the periodic table, you can notice that there is 1 less electron that then there is protons which means that the element had to give 1 electron away. When you get rid of 1 e- you have 1 proton more that electrons so that's why it's 1+
also the element is Cr
<h3>
Answer:</h3>
812 kPa
<h3>
Explanation:</h3>
- According to Boyle's law pressure and volume of a fixed mass are inversely proportional at constant absolute temperature.
- Mathematically,

At varying pressure and volume;
P1V1=P2V2
In this case;
Initial volume, V1 = 2.0 L
Initial pressure, P1 = 101.5 kPa
Final volume, V1 = 0.25 L
We are required to determine the new pressure;

Replacing the known variables with the values;

= 812 kPa
Thus, the pressure of air inside the balloon after squeezing is 812 kPa