Answer:
Explanation:
Num of molecules = num of moles * Avogadro's constant (6.02* 10^23)
But num of moles = reacting mass / molar mass
Molar mass of H20= 2*1 + 16 = 2+16 = 18g
Reacting mass of H20 = 0.55g
Therefore, num of moles of H20 = 0.55g/18g = 0.031 moles
Therefore, num of molecules of H20 = 0.031 * 6.02*10^23
= 1.87*10^22 molecules of H20
<span>The only scenario that
will allow you to reach an equilibrium mixture involving these chemicals is to
place NH3 into a sealed vessel. This reaction requires pressures between 2100,
3600 psi, and temperatures between 300 and 550 degree Celsius. With this given
temperature and pressure, the ammonia naturally decomposes into nitrogen and
hydrogen gas at the same rate. When this happen, the concentrations of these
chemicals become constant and the system is said to be at equilibrium.</span>
Answer:
The term conclusion best illustrates the given statement.
Explanation:
Conclusion refers to a decision or judgment that can be acquired by reasoning. From the observation mentioned in the given table:
1. The steel, aluminum, and bronze took 27, 45 and 80 seconds to dissolve small section of wax, this signifies that more time will be needed by them to transfer heat to the food while cooking. Thus, food will take more time to cook in them.
2. Copper consumed less time, that is, 15 seconds to melt the section of wax than the other metal pots, which signifies that it is a good conductor of heat than the others. Thus, the copper pot would be good for cooking food briskly.
After evaluating the results and observations in an experiment, the conclusion was made that pots made of copper are best for cooking foods.
Non metals can not give electrons to hydrogen in water to be released as H2 gas