Answer:
<h2>6426000 mg</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question
63 mL = 63 cm³
We have
mass = 102 × 63 = 6426
But 1 g = 1000 mg
6426 g = 6426000 mg
We have the final answer as
<h3>6,426,000 mg</h3>
Hope this helps you
C16H32O2(aq) --> 16CO2(g) + 16H2O(l) ... said its wrong though?
<span>This is because you haven't added any oxygen needed for the combustion, so your equation does'nt balance. Also a solution in water [aq] doesn't burn! </span>
<span>Try </span><span>C16H32O2(s) + 23O2(g) --> 16CO2(g) + 16H2O(l)
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
<span> Ice was soon being harvested from contaminated water sources. Microbes in the ice invaded the food and people became ill
</span>so <span>unsanitary ice is your answer i hope this helps</span>
1) Calculate the number of mols,n, of the substance
n = mass/ molar mass = 326.0 g / 58.45 g / mol = 5.577 moles
2) Calculate the molar heat of fusion as the total heat released by the sample divided by the number of moles
hf = heat released / n = 4325.8 cal / 5.577 moles = 775. 59 cal /mol
The answer for the following problem is mentioned below.
Explanation:
Given:
mass of iron (m) = 15.75 grams
heat (q) = 1097 J
initial temperature (
) = 25°C
final temperature (
) = 177°C
To find:
specific heat (c)
We know;
c = q ÷ mΔT
where;
c represents the specific heat
q represents the heat
m represents the mass
t represents the temperature
c = 
c = 0.45 J/kg°C
<u><em>Therefore the specific heat capacity of iron is 0.45 J/kg°C.</em></u>