The relationship between energy of a single photon and its wavelength can be determined using the formula E=hc/lambda where E is energy, h is Planck's constant, c is the speed of light, and lambda is photons.
Before being able to solve for energy, need to convert nanometers to meters.
407 nm (1 m/1 x 10^9 nm) = 4.07 x 10^-7 m
Then plug in the values we know into the equation.
E h(Planck's constant) c(speed of light)
E = (6.63 x 10^-34 Js)(3 x 10^8 m/s) / 4.07 x 10^-7 m (lambda)
E=(0.000000000000000000000000000000000663js)(300,000,000m/s)=1.989×10^-25j/ms
E=1.989x10^-25j/ms /{divided by} 4.07x10^-7m = 4.8869779x10^-33 J (the meters cancel out)
E = 4.89 x 10^-33 J
This gives us the energy in Joules of a single photon. Now, we can find the number of photons in 0.897 J
0.897J / 4.89 x 10^-33 J = ((0.897 J) / 4.89) x ((10^(-33)) J) = 1.8343558 x 10^-34
1.83435583 × 10-34m4 kg2 / s4 photons
The temperature increase when energy in is greater than energy out, and temperature decreases when energy out is than energy in.
Answer:
b) 0.75 mol, 0.9375 mol
Explanation:
According to this question, ammonia reacts with oxygen to produce nitrogen monoxide and water. The chemical equation is as follows:
4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)
Based on this balanced equation, 4 moles of ammonia (NH3) reacts with 5 moles of oxygen (O2).
A stoichiometric amount of the two reactants (NH3 and O2) must represent the ratio 4:5.
Given the provided options;
0.75 mol of ammonia (NH3) will react with (0.75 × 5/4) = 0.935 mol of O2 for them to be in stoichiometry.
N.B: 1 mol of NH3 will react with 1.25mol of O2 and not 1g, 1.25g.
yes electric charges can catch fire