Intermolecular forces of attraction hold the molecules together. These forces determine the physical properties of substances like melting and boiling points. There are five types of intermolecular forces: Hydrogen bonding, dipole-dipole interactions, ionic interactions, ion-dipole interactions and dispersion forces.
Hydrogen bonding is a stronger force of attraction between hydrogen atom and an electronegative atom (F, N, and O). So, water molecules exhibit hydrogen bonding.
In carbon dioxide molecules, although each C=O is polar the molecule as a whole will be non polar due to symmetry. Therefore, the only intermolecular forces in CO2 will be dispersion forces.
Hence, Hydrogen bonding exists between water molecules but not carbon dioxide molecules.
Answer:2817.8
Explanation:multiply the value by 365
The Correct Answer Is 3.2
Vinegar pH 3.2: Weak acid
Battery acid pH 0.5: Strong acid
Shampoo pH 7.0: Neutral
Ammonia pH 11.1 Strong base
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.