A reaction in which bonds are created is usually associated with the Release of energy.
What are the various types of bonds?
There are three sorts of bonds:
1. Electrovalent or electrovalent bond
2. chemical bond
3. dative bond
Electrovalent or electrovalent bond are formed when one or more electrons are transferred from one atom to another.
Covalent bonds are formed when the atoms during a molecule share an equal number of electrons.
A dative bond is one in which both electrons in a shared pair come from the same atom.
Now, atoms tend to stabilize once they form chemical bonds, releasing energy within the process. Energy is released because there's a higher level of stability associated with a low energy level.
Hence, a reaction in which bonds are created is usually associated with the release of energy.
To know more about chemical bonds go to the given link:
brainly.com/question/20584851
#SPJ4
Answer:
the unknown substance is a protein
Explanation:
The biuret test is one of the tests for proteins. It can be used to detect peptide linkages. The biuret test is carried out in an alkaline solution. A coordination complex is formed leading to the appearance of a violet color.
Summarily, the biuret method is a colorimetric technique used to test for proteins and peptides. It involves the formation of a purple (violet) complex of Copper salts in alkaline solution.
Hence when the biuret reagent is added to an unknown substance and it turns purple, the unknown substance is a protein
Answer:
T2= 7.3°C
Explanation:
To solve this problem we will use Charles law equation i.e,
V1/T1 = V2/T2
Given data
V1 = 269.7 L
T1 = 6.12 °C
V2= 320.4 L
T2=?
Solution:
Now we will put the values in equation
269.7 L / 6.12°C = 320.4 L / T2
T2= 320.4 L × 6.12°C/ 269.7 L
T2= 1960.85 °C. L /269.7 L
T2= 7.3°C
Answer:
Oxidation number of F2O = 0−(−1×2)
State of oxygen will be=+2
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate