<span>a) 7.9x10^9
b) 1.5x10^9
c) 3.9x10^4
To determine what percentage of an isotope remains after a given length of time, you can use the formula
p = 2^(-x)
where
p = percentage remaining
x = number of half lives expired.
The number of half lives expired is simply
x = t/h
where
x = number of half lives expired
t = time spent
h = length of half life.
So the overall formula becomes
p = 2^(-t/h)
And since we're starting with 1.1x10^10 atoms, we can simply multiply that by the percentage. So, the answers rounding to 2 significant figures are:
a) 1.1x10^10 * 2^(-5/10.5) = 1.1x10^10 * 0.718873349 = 7.9x10^9
b) 1.1x10^10 * 2^(-30/10.5) = 1.1x10^10 * 0.138011189 = 1.5x10^9
c) 1.1x10^10 * 2^(-190/10.5) = 1.1x10^10 * 3.57101x10^-6 = 3.9x10^4</span>
Im unsure :( maybe try looking up a calorie calculator
Answer:
In first shell 2 electrons are present and 7 electrons are present in last shell
Explanation:
Limestone and marble are the two rocks that are easily weathered by carbonic acid. Two kinds of weathering mostly affect the rocks. and they are physical weathering and chemical weathering. The above mentioned two rocks are highly affected by carbonic acid. The appeareance of these kind of rocks change their structure due to erosion very regularly. Caronation is the type of chemical weathering that affects the rocks limestone and marble. The carbonic acide is formed by the reaction of carbon dioxide in the air and water in the rivers. This carbonic acid results in weathering.
The correct option is this: THE CONCENTRATION OF THE PRODUCTS AND THE REACTANTS DO NOT CHANGE.
A reversible chemical reaction is said to be in equilibrium if the rate of forward reaction is equal to the rate of backward reaction. At this stage, the concentrations of the products and the reactants remain constant, that is, there is no net change in the concentration even though the reacting species are moving between the forward and the backward reaction.