The central force acting on the electron as it revolves in a circular orbit is
.
The given parameters;
- <em>speed of electron, v = 2.2 x 10⁶ m/s</em>
- <em>radius of the circle, r = 4.63 x 10⁻¹¹ m</em>
<em />
The central force acting on the electron as it revolves in a circular orbit is calculated as follows;

where;
is mass of electron = 9.11 x 10⁻³¹ kg

Thus, the central force acting on the electron as it revolves in a circular orbit is
.
Learn more about centripetal force here:brainly.com/question/20905151
The total momentum of the system has to be conserved to satisfy the principle of conservation of momentum. Before the ball hits the bottle, the momentum of the system is 0.4 x 18 = 7.2 kg m/s
The momentum of the bottle after being hit is 0.2 x 25 = 5 kg m/s
So the momentum of the ball now is 7.2 - 5 = 2.2 kg m/s
Hence its velocity is 2.2/0.4 = 5.5 m/s
To solve this problem we will use a free body diagram that allows us to determine the Normal Force.
In general, the normal force would be equivalent to

Since the skier is standing on two skis, his weight will be divide by two

Pressure is given as the force applied in a given area, that is

Replacing F with N'


Our values are given as,




Replacing we have that


Therefore the pressure exerted by each ski on the snow is 776.01Pa
Answer:
1st: Radiation
2nd: Conduction
3rd: Convection
Explanation:
I actually learned this before in school. Yay