The equivalent resistance when two resistors are connected in series is
the sum of their individual resistances.
The marking on the resistor that says "1000 W" is the rating that tells
how much power the resistor can safely dissipate, without overheating
or exploding. (The 'W' stands for 'Watts'.) It doesn't tell us anything about
their individual resistances. So we don't have enough information to calculate
their series equivalent.
Answer:
v = 2 v₁ v₂ / (v₁ + v₂)
Explanation:
The body travels the first half of the distance with velocity v₁. The time it takes is:
t₁ = (d/2) / v₁
t₁ = d / (2v₁)
Similarly, the body travels the second half with velocity v₂, so the time is:
t₂ = (d/2) / v₂
t₂ = d / (2v₂)
The average velocity is the total displacement over total time:
v = d / t
v = d / (t₁ + t₂)
v = d / (d / (2v₁) + d / (2v₂))
v = d / (d/2 (1/v₁ + 1/v₂))
v = 2 / (1/v₁ + 1/v₂)
v = 2 / ((v₁ + v₂) / (v₁ v₂))
v = 2 v₁ v₂ / (v₁ + v₂)
The conventional signal used by sailboats in conditions of reduced visibility such as heavy fog is one long blast followed by two short blasts.
The blasts help other boat operators locate one another's vessel in a condition where it is not easy to see. This signal is repeated in order to not only let others know of the vessel's position, but also help them know which way it is traveling. For example, if the blasts start to become distant, then the sailboat is travelling away from you.