Answer:
that one
Explanation:
actually if u look very closely u can notice that the taco has some dog tird cover up with the rat tail and topped with some soymilk
1) 5.79 s
2) 98.4 ft/s
Explanation:
1)
The motion of the car is a uniformly accelerated motion (it means it travels with constant acceleration), so we can find the time it takes for the car to stop by using the following suvat equation:

where
s is the distance travelled
v is the final velocity
t is the time
a is the acceleration of the car
In this problem we have:
s = 285 ft is the distance travelled
is the acceleration of the car (negative since the car is slowing down)
v = 0 ft/s is the final velocity of the car, since it comes to a stop
Solving for t, we find:

2)
The initial speed of the car can be found by using another suvat equation, namely:

where
v is the final speed
u is the initial speed
a is the acceleration
t is the time
In this problem, we have:
v = 0 is the final speed of the car
is the acceleration of the car (negative since the car is slowing down)
t = 5.79 s is the total time of motion (found in part 1)
Therefore, the initial speed of the car is:

Answer:
Location 2
Explanation:
This shows fall because the Earth is a little tilted not giving as much light
Answer:
<em>The rebound speed of the mass 2m is v/2</em>
Explanation:
I will designate the two masses as body A and body B.
mass of body A = m
mass of body B = 2m
velocity of body A = v
velocity of body B = -v since they both move in opposite direction
final speed of mass A = 2v
final speed of body B = ?
The equation of conservation of momentum for this system is
mv - 2mv = -2mv + x
where x is the final momentum of the mass B
x = mv - 2mv + 2mv
x = mv
to get the speed, we divide the momentum by the mass of mass B
x/2m = v = mv/2m
speed of mass B = <em>v/2</em>
Magnets are different because the molecules in magnets are arranged so that their electrons spin in the same direction.