Answer:
The velocity of the photo electron is
.
Explanation:
Given that,
Supplied energy, 
Minimum energy of the electron to escape from the metal, 
We need to find the velocity of the photo electron. The energy supplied by the photon is equal to the sum of minimum escape energy and the kinetic energy of the escaping electron. So,

The formula of kinetic energy is given by :

So, the velocity of the photo electron is
.
Answer:
B) 18,000 feet MSL
Explanation:
There are three-dimensional parts in the navigation airspace in the world. The class E airspace is mostly used in the regions with coastal areas that are relatively populated. If we consider certain forms of exceptions, the class E airspace can move in the upward direction to few feet (i.e. 1200 ft). However, this doesn't include 18,000 feet MSL.
Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus

C. 2000 calories.
Explanation/calculation:
Specific heat capacity = calories / mass * (final temperature - initial temperature)
1 = calories / 100 * (60 - 40)
1 = calories / 100 * 20
1 * (100 * 20) = calories
1 * 2000 = calories
2000 = calories