The final velocity before takeoff is 104.96 m / s.
<u>Explanation:</u>
The last velocity of a given object over some time defines the final velocity. The final velocity of the object is given by the product of acceleration and time and adding this product to the initial velocity.
To calculate the final velocity,
V = u + at
where v represents the final velocity,
u represents the initial velocity,
a represents the acceleration
t represents the time taken.

v = 104.96 m / s.
Because the top layer of a pool will be warmer than the bottom layer, that why filtration is important to cycle the water evenly.
The first moment of the total cross sectional area taken about the neutral axis must be zero.
As with non-composite beams, the neutral axis (NA) is the location where the bending stress is zero. The location of the NA depends on the relative stiffness and size of each of the material sections.
Generally, the NA location is determined relative to the bottom surface of the beam. However, this is not mandatory, and the location can be relative to any location. If the bottom is used, then the NA axis is a distance "h"
The distance h can be determined by recalling that the stresses through the cross section must be in equilibrium.
learn more about neutral axis from here: brainly.com/question/28167877
#SPJ4
To solve the problem it is necessary to apply the equations related to the conservation of both <em>kinetic of rolling objects</em> and potential energy and the moment of inertia.
The net height from the point where it begins to roll with an inclination of 30 degrees would be



In the case of Inertia would be given by

In general, given an object of mass m, an effective radius k can be defined for an axis through its center of mass, with such a value that its moment of inertia is



Replacing in Energy conservation Equation we have that
Potential Energy = Kinetic Energy of Rolling Object




Therefore the correct answer is C.
<span>When you apply force to move an
object at a distance, you are applying work. And work is energy in transit. The
answer is letter D. For example, you see a cart at a distance. You observe that
it is not moving. You want to transfer it to your backyard. You apply force to
the cart and observed that the cart is not at the same position as it was
before. You are applying work to the cart by transferring your energy to it.</span>