Answer:
c) 2Q
Explanation:
From the given information:
The pressure inside a pipe can be expressed by using the formula:

Since the diameter in both pipes is the same, we can say:

where;
length of the first pipe A
and the length of the second pipe B 
Since the difference in pressure is equivalent in both pipes:
Then:




Answer:



Explanation:
= Uncertainty in position = 1.9 m
= Uncertainty in momentum
h = Planck's constant = 
m = Mass of object
From Heisenberg's uncertainty principle we know

The minimum uncertainty in the momentum of the object is 
Golf ball minimum uncertainty in the momentum of the object

Uncertainty in velocity is given by

The minimum uncertainty in the object's velocity is 
Electron


The minimum uncertainty in the object's velocity is
.
Answer:
No distance is the length between two routes
Explanation:
Distance is the length of the route between two points. ... Direction is just as important as distance in describing motion. A vector is a quantity that has both size and direction. It can be used to represent the distance and direction of motion.
Answer:
DU = 120 Joules
Explanation:
Given the following data;
Quantity of energy = 200 J
Work = 80 J
To find the change in internal energy;
Mathematically, the change in internal energy of a system is given by the formula;
DU = Q - W
Where;
DU is the change in internal energy.
Q is the quantity of energy.
W is the work done.
Substituting into the formula, we have;
DU = 200 - 80
DU = 120 Joules
A good electrical conductor is a material that has a lot of free charges that can easily move across the material, and with a large mean free path.
Now let's assume that one side of the material is at higher temperature than the other side. The charges on the hotter side move faster than the charges on the cooler side, so the faster charges transfer part of their energy to the charges of the cooler side by collisions. The larger the number of free charges (and the larger their mean free path), the faster is this transmission of energy (which is basically transmission of heat), so the larger is the thermal conductivity of the material, so a good electrical conductor is generally also a good thermal conductor.