Answer:
Tycho Brahe
Explanation:
Tycho Brahe's accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion.
Answer:
See the explanation below.
Explanation:
The force is a vector therefore we can decompose the force into components x & y. as we need the horizontal component of the force, we must use the cosine function of the angle.
![F_{1x}=30.8*cos(20)\\F_{1x}=28.94[N]\\F_{2x}=34.3*cos(20)\\\\F_{2x}= 32.23[N]](https://tex.z-dn.net/?f=F_%7B1x%7D%3D30.8%2Acos%2820%29%5C%5CF_%7B1x%7D%3D28.94%5BN%5D%5C%5CF_%7B2x%7D%3D34.3%2Acos%2820%29%5C%5C%5C%5CF_%7B2x%7D%3D%2032.23%5BN%5D)
Answer:
Depending on the relative position of the Earth the Sun and Neptune in the Earths orbit the distances are;
The closest (minimum) distance of Neptune from the Earth is 29 AU
The farthest (maximum) distance of Neptune fro the Earth is 31 AU
Explanation:
The following parameters are given;
The distance from the Earth to the Sun = 1 AU
The distance of Neptune from the Earth = 30 AU
We have;
When the Sun is between the Earth and Neptune, the distance is found by the relation;
Distance from the Earth to Neptune = 30 + 1 = 31 AU
When the Earth is between the Sun and Neptune, the distance is found by the relation;
Distance from the Earth to Neptune = 30 - 1 = 29 AU
Therefore, the closest distance from Neptune to the Earth in the Earth's Orbit is 29 AU
The farthest distance from Neptune to the Earth in the Earth's orbit is 31 AU.