Answer:
that's because....
group 1 (e.g Na, K) those tend to lose one electron to gain noble gas electron configuration.
they can achieve that by just losing one electron from their outer shell.
as you go down the group 1, element gets bigger in size, which means there is more space between nucleus (which is in center of atom) and electron of outer shell. the more far away they are the less attraction force between them.
so its easier for potassuim to lose one electron than for lithuim.
so that means potassium will easily give up 1 electron to react with non metal or other element therefore it is more reactive than lithuim
but in case of non metal, the opposite happens but simple to understand.
as you go down the group 7 (halogen- Cl, Br, I) element will get bigger therefore force between nucleus and outer electron is getting smaller. they have to gain 1 electron in order to fill the outer shell (to gain noble gas electron configuration.)
as florine is more smaller in size than clorine it is more reactive because florine has more tendency to pull extra electron from metal or other element towards its side. so it easily gain 1 electron to react.
Explanation:
Ok so water is H2O and cabon dioxide in the air is CO2, so the water goes through the carbon dioxide and makes acid rain H2SO4.
Now we have our limestone which is CaCO3.
What happens is that the acid breaks apart our limestone into Ca2+ and CO3 2-. This then reforms into Calcium bicarbonate Ca(CO3)2.
Calcium bicarbonate is soluble in water and is hence washed away by the rain eroding the limestone.
Answer:
Likely to gain electrons
Explanation:
The atom shown is likely to gain additional electrons to complete its electronic configuration.
- Since this is a neutral specie, the number of protons and electrons are the same.
- The atom has 16 electrons
- the number of valence electrons is 6
- If the atom gains two additional electrons, the octet configuration is attained
- Also, the atom can lose 6 electrons to become an octet
The atom will prefer to gain additional 2 electrons to give an octet configuration.