Answer:
Choice B. The solid with hydrogen bonding.
Assumption: the molecules in the four choices are of similar sizes.
Explanation:
Molecules in a molecular solid are held intact with intermolecular forces. To melt the solid, it is necessary to overcome these forces. The stronger the intermolecular forces, the more energy will be required to overcome these attractions and melt the solid. That corresponds to a high melting point.
For molecules of similar sizes,
- The strength of hydrogen bonding will be stronger than the strength of dipole-dipole attractions.
- The strength of dipole-dipole attractions (also known as permanent dipole) will be stronger than the strength of the induced dipole attractions (also known as London Dispersion Forces.)
That is:
Strength of Hydrogen bond > Strength of Dipole-dipole attractions > Strength of Induced dipole attractions.
Accordingly,
Melting point due to Hydrogen bond > Melting point due to Dipole-dipole attractions > Melting point due to Induced Dipole attractions.
- Induced dipole is possible between all molecules.
- Dipole-dipole force is possible only between polar molecules.
- Hydrogen bonds are possible only in molecules that contain
atoms that are bonded directly to atoms of
,
, or
.
As a result, induced dipoles are the only force possible between molecules of the solid in choice C. Assume that the molecules are of similar sizes, such that the strengths of induced dipole are similar for these molecules.
Melting point in choice B > Melting point in choice D > Melting point in choice A and C.
There isn’t a formula for science. There are many different sciences and different formulas for different units for different sciences.
Science is very complex.
Science is the intellectual and practical activity encompassing the systematic study of the structure and behavior of the physical and natural world through observation and experiment.
types of sciences are a systematically organized body of knowledge on a particular subject.
Explanation:
well when you heat ice the individual molecules gain kinetic energy. but until the temperature reaches it's melting point they don't have the energy to break bonds and hold their crystal structure. So, the temperature remains constant until the ice has melted. Hope this helped. Good luck on your project!
Physical changes are when things get changed without altering chemical consistencies, which is melting solid butter into liquid one, or boiling water. Chemical changes are things such as caramelizing sugar when making sweets, or when carbon dioxide is created and released when baking bread.